

SOUTHERN COPPER & SUPPLY COMPANY, INC.

R.W.M.A. Alloys & Resistance Welding Products

ELECTRODES • HOLDERS • BAR STOCK SEAM WELDING WHEELS • SPECIAL DIES • RINGS SHAFTS • BUSHINGS • CASTINGS • FORGINGS ELECTRODE MATERIALS

Special electrodes, holders, and dies for resistance welding applications.

Southern Copper & Supply Company, Inc. 875 Yeager Parkway • P.O. Box 570 • Pelham, AL 35124

Phone (205) 664-9440 (800) 289-2728 Fax (205) 664-1365

SCS International Phone (205) 620-1136 Fax (205) 620-1133

Visit our web site today: www.southerncopper.com

Class II Alloy

(Chrome Copper) = Alloy C18200

Class II alloy is a superior resistance welding electrode material specifically recommended for high level production spot welding and seam welding of clean mild steel, and low alloy steels, low conductivity brasses and bronzes.

Suitable for projection welding dies, seam welder shafts and bearings, flash and butt welding dies and current carrying structural members.

Available as high strength and high electrical conductivity castings for such use as gun welder arms, welder platens and secondary structural members.

Class III Alloy

(Beryllium Copper with additions of Cobalt, Nickel or Silver) = Alloy C17510

Class III alloy is specifically recommended for projection welding dies, flash and butt welding dies, current carrying shafts and bushings. As castings, Class III alloy (having higher strength than Class II), is recommended for highly stressed welder structural current carrying members and heavy-duty offset electrode holders.

Class III alloy is generally recommended for spot welding and seam welding steels having high electrical resistance, such as stainless steels.

Copper No. 110 (C110)

Copper No. 110 is specified because of its high thermal and electrical conductivity. Copper 110 is used for welding fixtures, anodes, buss bar in electrical power installations, ground straps, commutators, etc. Its inherent fabrication qualities readily permit it to be bent, soldered, drilled, peened, riveted and formed to fit almost any design specification.

Copper No. 101 (O.F.H.C.)

Oxygen Free High Conductivity copper is produced by the direct conversion of selected refined cathodes and castings under carefully controlled conditions to prevent any contamination of the pure oxygen-free metal during processing.

The method of producing O.F.H.C. Copper insures an extra high grade of metal with a copper content of 99.99%. With such small content of extraneous elements, the inherent properties of elemental copper are brought forth to a high degree.

Among such characteristics are high ductility, high electrical and thermal conductivity, high impact strength, good creep resistance, ease of weldability, and low volatility under high vacuum.

Class I Alloy

(Zirconium Copper) = Alloy C15000

Class I alloy is superior to pure copper as an electrode material and is recommended as a general purpose material for resistance welding applications. It may be used as spot welding electrodes, seam welding wheels and welder fixtures.

Specifically recommended, because of its high electrical and thermal conductivity, for spot welding aluminum alloys, magnesium alloys, coated materials (tern plate, tin plate, galvanized iron, cadmium plate), brass and bronze. Class I alloy is not practical in cast form. It is not heat treatable.

Class IV Alloy (Beryllium Copper)

Class IV alloy has extremely high hardness and ultimate tensile strength although the electrical conductivity is lower than the Class III alloy. It is generally recommended as electrode material for special flash, flash butt and projection welding applications where pressures are extremely high and wear is severe but where heating is not excessive. It is available as wrought material for highest quality dies and electrodes and may also be obtained as high strength castings. It is used frequently in the forms of inserts and die facings, and may also be used for seam welder bushings.

Class IV alloy is available in the annealed condition, in this state it can be more readily machined and may be subsequently heat treated to maximum hardness.

STANDARD STOCK GROUP B - REFRACTORY METAL COMPOSITIONS

Class 10 (Copper Tungsten)

Class 10 material is recommended as facing or inserts for projection welding electrodes and flash and butt welding dies where high electrical conductivity is desirable and a degree of malleability is necessary.

Class 11 (Copper Tungsten)

Class 11 (a harder material than Class 10) is recommended as facing and inserts for flash and butt welding dies and general purpose projection welding electrodes. It may also be used as seam welder bearing inserts and facings for electroforming or electro-forging, such as stainless steel.

Class 12 (Copper Tungsten)

Class 12 material is specifically recommended for heavy duty projection welding electrodes and for

die facings in electro-forming and electro-forging applications. It is suitable as die material for electrical upsetting of rivets and studs.

Class 13 (Tungsten)

Class 14 (Molybdenum)

Class 13 and Class 14 materials are recommended principally for welding or electrobrazing nonferrous metals having relatively high electrical conductivity.

Cross wire welding of copper and brass wires and welding of copper wire braid to brass and bronze terminals are typical applications. Generally, special set-ups and procedures are required for this type of work.

				MI	NIMUM PH	VSICAL PR	OPERTIES	FOR RWI	MA ALLOY	5						
COPP	DUP A* ER BASE LOYS		HARDNESS ROCKWELL		co	NDUCTIVIT % I.A.C.S.		YIELD STRENGTH ksi (typical) (5% Ext Under Load)			l	ULTIMATE TENSILE RENGTH	-	ELONGATION % IN 2" OR 4" DIAMETERS		
SIZE	RANGE		CLASS			CLASS			CLASS			CLASS		CLASS		
IN	ММ	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3
DIAMETER - ROUND ROD STOCK (COLD WORKED)																
UP TO 1"	UP TO 25	65 HRB	75 HRB	90 HRB	80%	75%	45%	45	55	90	60	65	95	13%	13%	9%
OVER 1 TO 2	OVER 25 TO 51	60 HRB	70 HRB	90 HRB	80%	75%	45%	45	55	90	55	59	92	14%	13%	9%
OVER 2 TO 3	OVER 51 TO 76	55 HRB	65 HRB	90 HRB	80%	75%	45%	45	55	90	50	55	88	15%	13%	9%
		•	тніск	NESS - SQUA	RE, RECTA	ANGULAR A	ND HEXA	GONAL E	AR STOCK	(COLD W	(ORKED)					
UP TO 1"	UP TO 25	55 HRB	70 HRB	90 HRB	80%	75%	45%	45	45	90	60	65	95	13%	13%	9%
OVER 1"	OVER 25	50 HRB	65 HRB	90 HRB	80%	75%	45%	45	40	90	50	55	90	14%	13%	9%
		·				THICKNE	SS - FORC	SINGS								
UP TO 1"	UP TO 25	55 HRB	65 HRB	90 HRB	80%	75%	45%	45	45	50	60	55	94	12%	13%	9%
OVER 1 TO 2	OVER 25 TO 51	50 HRB	65 HRB	90 HRB	80%	75%	45%	45	45	50	50	55	90	13%	13%	9%
OVER 2	OVER 51	50 HRB	65 HRB	90 HRB	80%	75%	45%	45	40	50	50	55	88	13%	13%	99
	<u> </u>	<u></u>	-			C	ASTINGS									
ALL	ALL	NA	55 HRB	90 HRB	NA	70%	45%	NA	20	45	NA	45	75	NA	12%	59

All materials are in fully heat treated condition unless otherwise specified. Round rod up to 1" (25 mm) diameter is fully heat treated and cold worked.

			СН	IEMICAL C	OMPOSITIO	N OF RWM	A MATERIA	ALS						
				GROU	P A - COPPI	ER BASE A	LLOYS			_				
RWMA CLASS	RWMA NUMBER	DESCRIPTION	Cu (incl. Ag)	Fe	w	Cd	Ni	Co	Cr	Si	Be	Pb	Zr	AI
1	15000	Zirconium Copper	99.80 min.										.10 - .20	
2	18150	Chromium-Zirconium Copper	REM.						.5- 1.5				.05 - .25	
2	18200	Chromium Copper	REM.	.10 max.					.6 - 1.2	.10 max.		.05 max.		
3	17500	Cobalt-Beryllium Copper	REM.	.10 max.				2.4 - 2.7		.20 max.	.4 - .7 max.			.20 Max
3	17510	Nickel-Beryllium Copper	REM.	.10 max.			1.4 - 2.2	.30 max.		.20 max.	.2 - .6			.20 max
3	18000	Nickel-Silicon Chromium Copper	REM.	.15 max.			1.8 - 3.0		.1 - .8	.4 - .8				
4	17200	Beryllium Copper	REM.				.20% Ni+F	Co, min., e + Co max.		.20 max.	1.8 - 2.0	.02 max.		.20 max
		GI	OUP B - REF	RACTORY	METAL AND	REFRACT	ORY META	L COMPOS	ITES			_		
10	74450	Copper Tungsten	43-47		REM.									
11	74400	Copper Tungsten (ASTM B702 C1 D)	23-27		REM.									
12	74350	Copper Tungsten (ASTM B702 C1E)	18-22		REM.									
13	74300	Copper Tungsten			99.9 min.									
14	42300	Molybdenum (ASTM B387 Alloy 360 or 361)			(Mo) 99.9 Min.									

RWMA numbers correspond to five digits following a "C" in the Copper Development Association and Unified Numbering Systems.

SCS

COPPER ALLOYS FOR RESISTANCE WELDING

PHYSICAL PROPERTIES												
COPPER BASE ALLOYS	HARDNESS ROCKWELL F SCALE	CONDUCTIVITY % I.A.C.S. @ 68 F	YIELD STRENGTH psi	ULTIMATE TENSILE STRENGTH psi	ELONGATION %							
UNS - C11000	90	101	44,000	48,000	10							
UNS - C10100	87	101	44,000	48,000	15							

						CHEMIC	AL COMP	OSITION						
						COPPE	R BASE A	LLOYS						
UNS NUMBER	DESCRIPTION	Cu	Fe	Р	Cd	Ni	Co	Cr	Si	Be	Pb	Zr	Al	Other Elements
C11000	ELECTROLYTIC TOUGH PITCH	99.90												Oxygen .04
C10100	Oxygen Free High Conductivity (O.F.H.C.)	99.99		.0003										Oxygen .0010

Alloy No.	Specification
Class II Chromium Copper	R.W.M.A., Group A
(C18200)	SAE J463, J461, MIL-C-19311

Specification Equivalents

Chemical Composition % by Weight

UNS No.	Chromium	Lead	Iron	Silicon	Zinc	Copper
C18200	0.6-1.2	0.05 Max	0.10 Max	0.10 Max	-	Balance

Corrosion Resistance

In general, this alloy has the same corrosion resistance as pure copper. As a result, mercury and ammonia compounds, as well as nitric acid, should be avoided.

Physical Properties (C18200)										
Density	0.321 lb/in ³	8.89 8/cm ³								
Coefficient of thermal expansion (68 to 212 F, 20 to 100 C)	9.8 x 10 ⁻⁶ F ⁻¹	17.6 x 10 ⁻⁶ C ⁻¹								
Thermal Conductivity (68 F, 20 C)	187 BTU/ft∙hr∙F	325 W/m•C								
Electrical Conductivity	80% IACS (67 F, 20 C)	.46 Megmho/cm								
Melting Temperature	1960 F	1070C								

Chromium Copper Physical Properties (C18200)

Machining

Chrome copper is easily machined with either high speed steel or carbide tools. Standard, off-the-shelf tools are recommended for all general machining operations.

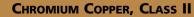
Turning tools should be ground with generous positive rake angles to minimize cutting resistance. Mineral oil and water-soluble cutting fluids are recommended to improve tool life and surface finish.

Diameter or Distance Across Flats	Ultimate Tensile Strength (ksi)	Elongation (% in 2")	Rockwell Hardness B Scale
Rod (Round & Hex)			
Up to 1 inch	65	9	75
Over 1 inch to 2 inches	60	10	70
Over 2 inches to 3"	55	12	65
Over 3 inches	50	12	60
Bar			
Thickness up to 1 inch	60	8	70
Width up to 1 inch			
Thickness over 1" to 2"	55	12	65
Width over 2 inches			
Thickness over 2 inches	50	19	60
Width over 3 inches			

Minimum Mechanical Properties

Note: Available in AT or HT temper depending upon size.

Workability


Chromium Copper Alloy C18200 is usually supplied in the cold drawn and heat treated condition. In this condition, this alloy is suited for moderate cold working, such as bending.

Forms and 1 Most Comm	I	Ann	eale	d Terr	pers	Fin							Finis	Hot Finished Fempers				
		No	minal (Grain	Size	mm	_					_				Iemp	1013	
		.100	.070	.035	.025	.015	Soft Anneal	Light Anneal	Solution Heat Treated	Solution Heat Treated and Cold Worked	Solution Heat Treated, Cold Worked and Aged	Solution Heat Treated, Cold Worked, Aged, and Cold Worked	Solution Heat Treated and Aged	Mill Annealed	Mill Annealed and Cold Worked	As Hot Rolled	As Extruded	Special Tempers
	Strip, Rolled	1																
	Strip, Drawn								.									
	Flat Wire, Rolled																	
FLAT	Flat Wire, Drawn																	
PRODUCTS	Bar, Rolled																	
	Bar, Drawn																	
	Sheet													🌰				
	Plate								🌒	🌰								
	ROD						· · · ·			🌰				🔶				
	WIRE								🌒	🔶				🌰				
	TUBE													🔶				
	PIPE		• • • • •									• • • • • • • • •						
SHAPES			• • • •	• • • •	• • • •							• • • • •		.●				
Mechanical	lechanical Properties							Yield	d Strengt	h	Elonga-		1					

Machanical Properties

Mechanica	Mechanical Properties				Tensile (.5 Ext.		B	Rockwell		Rockwell		Shear	Fa	itigue
	Size		Strength	under Load)	(.2% Offset)	tion in 2 in.		ardn		Strength		rength		
Form	Section in.	Temper	ksi	ksi	ksi	%	F	В	30T	ksi	ksi	Million Cycles		
FLAT PRODUCTS	.040 in.	Solution Heat Treated Solution Heat Treated and	34.0	19.0		40	-	16	_					
PRODUCTS		Aged (500C-3 hrs)	51.0	36.0		22	-	59	_					
		Solution Heat Treated and Cold Worked (50%) Solution Heat Treated, Cold Worked (50%),	53.0	51.0		6	-	66	_					
		and Aged (450C-3 hrs)	67.0	59.0		14	-	79	—					
PLATE	2.0 in. 3.0 in.	Solution Heat Treated and Aged Solution Heat Treated	58.0	42.0	• • • •	25	-	70	_					
		and Aged	56.0	40.0		30	-	68						
ROD	.156 in.	Solution Heat Treated and Cold Worked (91%) Solution Heat Treated, Cold	74.0	73.0		5	-	_	_					
	.500 in.	Worked (90%), and Aged Solution Heat Treated Solution Heat Treated and	86.0 45.0	77.0 14.0	• • • •	14 40	_	_	_	 				
		Aged (500C-3 hrs)	70.0	55.0	• • • •	21	-	70	—					
		Solution Heat Treated and Cold Worked (60.5%) Solution Heat Treated	57.0	56.0		11	-	65	—					
		and Cold Worked (60.5%) and Aged (450C-3 hrs) Solution Heat Treated, Cold Worked (50%), Aged and	77.0	65.0		16	-	82	_	••••		Miniori Cycles		
	1.0 in.	Cold Worked (6%) Solution Heat Treated	77.0	67.0		19	-	83	_					
	2.0 in.	and Aged	72.0	65.0		18	-	80	_					
		Solution Heat Treated and Aged	70.0	65.0		18		75	_					
	3.0 in.	Solution Heat Treated and Aged	65.0	55.0		18	-	70	_					
	4.0 in.	Solution Heat Treated and Aged	55.0	43.0		25	-	68						
TUBE	3/8 in.OD X .094 in. 1.250in.OD	Mill Annealed	40.0	15.0		50	59	_	_					
	X .212 in.	12 in. and Cold Worked (76%) Solution Heat Treated, Cold		57.0	• • • •	21	-	67	_	• • •	• • • •			
		Worked (76%), Aged and Cold Worked (28%)	69.0	63.0		26	_	84	_			• • • • •		

The values listed above represent approximations suitable for general engineering use. Due to commercial variations in composition and to manufacturing limitations, they should not be used for specification purposes. See applicable A.S.T.M. specification references.

Composition-percent

L

	Nominal	Minimu	m Maximun	<u> </u>	learest Applic	cable A S T M Specifications
Copper Iron	99 .1				Flat Products Pipe	
Chromium			1.2		Rod	
Silicon			.10		Shapes	
Lead			.05		Tube	
Arsenic					Wire	F9
Calcium						
Lithium						
Phosphorus						1
Zinc						
Silver						
Copper (Incl. Ag)						
+Elements with		00.5				
Specific Limits		99.5	• • • •			
Physical Properties					1	
				English Units		C.G.S. Units
Melting Poir	· .	<i>'</i>	1967		1075	
Melting Po	int (Solidus	<i>,</i>	1958	F	1070	C
S	Densit	~	.321 8.89	lb/cu in @ 68 F	8.89 8.89	gm/cu cm @ 20 C
-	cific Gravit	-	.0000098	per ° F from 68 F to 212 F	.0000176	per ° C from 20 C to 100 C
Coefficient of Therma Coefficient of Therma	-		.0000098	per ° F from 68 F to 392 F	.0000178	per ° C from 20 C to 200 C
Coefficient of Therma				per ° F from 68 F to 572 F		per ° C from 20 C to 300 C
	Conductivity		187	Btu/sq ft/ft/hr/°F @ 68 F	.77	cal/sq cm/cm/sec/° C @ 20 C
Electrical Resistivity		-	13.0	Ohms (circ mil/ft) $@$ 68 F	2.16	Microhm-cm @ 20 C
Electrical Conductivity*		<i>'</i>	80	% IACS @ 68 F	.463	Megmho-cm @ 20 C
Thermal Capacity (Sp	•	·	.092	Btu/lb °F @ 68 F	.092	cal/gm/° C @ 20 C
Modulus of Elastic			17,000,000	psi	12,000	Kg/sq mm
Modulu	s of Rigidity	y	7,200,000	psi	5,100	Kg/sq mm

*Volume Basis

**Solution Heat Treated, Cold Worked (50% minimum) and Aged (Volume Basis)

Typical Uses

Resistance welding machine electrodes, seam welding wheels, electrical switch gear, electrode holder jaws, cable connectors, current carrying arms and shafts, circuit breaker parts, arcing and bridging parts, grid siderods in electron tubes, molds, spot welding tips, flash welding electrodes, electrical and thermal conductors requiring greater strength than copper, switch contacts

Common Fabrication Processes

Hot: Extrusion, rolling, forging Cold: Drawing, rolling, impacting, heading, bending, swaging

Fabrication Properties

Capacity for Being Cold Worked	Go	od		,		
Hot Forgeability Rating (Forging Brass = 100).		80	Brazing			Good
Hot Working Temperature	700 F or 800-925	C	Oxyacetylene W	elding	Not H	Recommended
***Annealing Temperature	F or	С	Gas Shielded Ar	c Welding		Good
Machinability Rating (Free Cutting Brass = 100)		20	Coated Metal An	rc Welding	Not H	Recommended
				Spot	Not F	Recommended
			Resistance Welding	Seam	Not F	Recommended
***Recommended Solution Heat Treating and Aging	Cycles		-	Butt		Fair
Condition	Solution	Treating	Time	Ag	jing	Time
Solution Heat Treated and Aged or						
Solution Heat Treated, Cold Worked and Aged	1800-1850F	980-1000C	10-30 min.	800-930F	425-500C	2-4 hrs.
The values listed above represent reasonab	le approvimatione eu	itable for general c	paineering use. Due to con	mercial variations in	composition and	

The values listed above represent reasonable approximations suitable for general engineering use. Due to commercial variations in composition and to manufacturing limitations, they should not be used for specification purposes. See applicable A.S.T.M. specification references.

Alloy No.	DIN Material No.
C17510 Class III Beryllium Copper	2.0850

Specifications Equivalents

Chemical Composition % by Weight

Be	Ni	Cu
0.2 - 0.6	1.4 - 2.2	Balance

Material Properties

High thermal conductivity combined with good hardness and high temperature strength. Good resistance to tampering. Not suitable for case hardening or nitrating.

Applications

Low pressure blow molds. Limited applications for injection molds. Inserts in steel and aluminum molds. Provides higher cooling rates at critical mold areas. Sealing tools. Cooling inserts in molds and casting molds. Plungers for die casting of light metal castings. Nozzles and needles for hot runner systems.

Hardness	Brinell	*163-213	RB92-102
Tensile Strength**	KSI	115	
Yield Strength**	KSI	100	
Elongation**	%	10	
Elastic Modules	KSI	19,200	

*Hardness Conversions are approximate.

******Tensile Test values are nominal approximations and depend on specimen size and orientation.

Physical Properties

Thermal Conductivity	BTU/(ft hr F)	145
Specific Heat	BTU/lb/F	0.1
Thermal Expansion	in/in/F	10.0 x 10 ⁻⁶
Density	lb/cu/F	0.317
Hot Forming***	1500-1750°F	Air or Water Cooled
Heat Treatment***	Anneal 1650-1750°F to approx. HB 100	1/2 hr. & Water Quench
	Harden 900°F to approx. HB 200	3 hr. Air Cool

***Class III Beryllium Copper is pre-tempered to the correct strength. Hot forming and further heat treatment are not needed or recommended. Direct machining to desired configuration is preferred.

Machining Data

Machining	Tungsten Carbide	High Speed Steel
Turning		
cutting speed (SFM)	1500 - 1800	200 - 300
rake angle (Deg)	5	10
feed (IPR)	.010	.025
Milling		
cutting speed (SFM)	800 - 1600	400 - 800
rake angle (Deg)	10	10
feed (inch/tooth)	.005008	.005008
depth of cut	.050125	.050125
Drilling		
cutting speed (SFM)		200 - 600
feed (IPR)		.002009

Composition-percent

Nominal	Minimum	Maximum	Nearest Applicable A S T M Specific		
96.9			Flat Products	B441, B534	
		.10	Pipe		
1.7	1.4	2.2	Rod	B441	
.4	.2	.6	Shapes		
			Tube		
			Wire		
	99.5				
	 1.7	1.7 1.4 .4 .2	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	96.9 Flat Products 1.7 1.4 2.2 Rod .4 .2 .6 Shapes Tube Wire Wire Wire	

Physical Properties

vsical Properties		English Units		C.G.S. Units
Melting Point (Liquidus)	1955	F	1068	С
Melting Point (Solidus)	1885	F	1029	С
Density	.316	lb/cu in @ 68 F	8.75	gm/cu cm @ 20 C
Specific Gravity	8.75		8.75	
Coefficient of Thermal Expansion		per ° F from 68 F to 212 F		per ° C from 20 C to 100 C
Coefficient of Thermal Expansion	.0000098	per ° F from 68 F to 392 F	.0000176	per ° C from 20 C to 200 C
Coefficient of Thermal Expansion		per ° F from 68 F to 572 F		per ° C from 20 C to 300 C
Thermal Conductivity	120 - 150	Btu/sq ft/ft/hr/°F @ 68 F	.4962	cal/sq cm/cm/sec/° C @ 20 C
Electrical Resistivity (Annealed)	22.8	Ohms (circ mil/ft) @ 68 F	3.79	Microhm-cm @ 20 C
Electrical Conductivity* (Annealed)**	45	% IACS @ 68 F	.261	Megmho-cm @ 20 C
Thermal Capacity (Specific Heat)	.10	Btu/lb °F @ 68 F	.10	cal/gm/°C @ 20 C
Modulus of Elasticity (Tension)	19,000,000	psi	13,500	Kg/sq mm
Modulus of Rigidity	7,500,000	psi	5,250	Kg/sq mm

*In the precipitation hardened condition **Volume Basis

.

Typical Uses

HARDWARE:

fuse clips, fasteners, springs, switch parts, relay parts, electrical conductors INDUSTRIAL: welding equipment

Common Fabrication Processes

Blanking, forming and bending, turning, drilling, tapping

Fabrication Properties

Capacity for Being Cold Worked Excellent	Suitability for being joined by:
Capacity for Being Hot Formed	Soldering
Hot Forgeability Rating (Forging Brass = 100)	Brazing
Hot Working Temperature 1200-1625 F or 650-765 C	Oxyacetylene WeldingNot Recommended
Machinability Rating (Free Cutting Brass = 100)	Gas Shielded Arc Welding Fair
Solution Heat Treating Temperature 1675-1725 F or 900-950 C	Coated Metal Arc Welding Fair
	SpotGood
	Resistance Welding Seam Fair
	ButtFair

The values listed above represent reasonable approximations suitable for general engineering use. Due to commercial variations in composition and to manufacturing limitations, they should not be used for specification purposes. See applicable A.S.T.M. specification references.

BERYLLIUM COPPER CLASS III

Forms and Most Comr		d	· ا	Annealed 1	Tempers	5				Rolle	d or Draw	n Terr	ipers			Ho Finist Temp	ned	
			Nomir	nal Grain S	ize mm	Ì		-	-	-, p	ł, and		-				0.0	
			.100 .070	.050 .035 .01	.015	Soft Anneal	Light Anneal	Solution Heat Treated	Solution Heat Treated and Cold Worked	Solution Heat Treated, Cold Worked and Aged	Solution Heat Treated, Cold Worked, Aged, and	Cold Worked	Solution Heat Treated and Aged	Mill Annealed	Mill Annealed and Cold Worked	As Hot Rolled	As Extruded	Special Tempers
FLAT PRODUCTS	Strip Flat Wire Flat Wire Ba Ba	r, Rolled r, Drawn Sheet Plate ROD WIRE TUBE PIPE			~ ~ ~			•				_					· · · · · · · · · · · · · · · · · · ·	······
Mechanica		SHAPES		•••••	<i>.</i> . 1				 Strength				• • • • •	•••			· · ·	•••••
Form	Size Section		Temper		Tens Stren		•	5 Ext. er Load)	(.2% (Elonga- tion in 2 in.	1	ockwel ardnes		Shear Strength		Fatig Stren	
	in.		lemper		ks	i		ksi	k	si	%	F	в (з	от	ksi	ksi		Million Cycles
FLAT PRODUCTS	.040 in.	Solution H Solution H			34.	0		19.0		••	40	-	16	-				
moboens			00C-3 hr	s)	51.	0		36.0			22	-	59	-				
		Solution H Cold Wo	orked (50 leat Treat orked (50 d (450C-	ed, %),	53. 67.			51.0 59.0	• • •		6 14	_	66 · 79 ·	_				
PLATE	2.0 in.	Solution H	eat Treat															• • • •
	3.0 in.	and Age Solution H and Age	eat Treat	ed	58. 56.			42.0 40.0			25 30	_	70 · 68 ·	_				
ROD	.156 in.	Solution H	eat Treat I Worked	(91%)	74.	0		73.0			5	-		-				••••
	.500 in.		(90%), a	nd Aged	86. 45.			77.0 14.0			14 40	-	_ :	_		 		
			00C-3 hr	s)	70.	0	:	55.0			21	_	70 ·	-				
		Solution H Cold Wo Solution H	rked (60.	.5%)	57.0	0	:	56.0		· •	11	-	65 -	-				
		and Colo and Age Solution H	l Worked d (450C - eat Treat	(60.5%) 3 hrs) ed, Cold	77.0	0		65.0			16	-	82 -	_				••••
	1.0 in.		(50%), A orked (6% eat Treat	5)	77.	0		67.0			1 9	-	83 -	-		••••		
	2.0 in.	and Age Solution H	d		72.	0	(65.0	• •		18	-	80 -	-		••••		••••
	3.0 in.	and Age Solution H	đ		70.0	0	(65.0			18	-	75 -	-		• • • •		• • • •
	4.0 in.	and Age Solution H	eat Treat	ed	65.0			55.0	••		18	-	70 -			· · · ·		
TUBE	3/8 in.OD	and Age	1		55.0	0	4	43.0	••	· •	25	-	68 -	-	•••			• • • •
	X .094 in. 1.250in.OD	Mill Annea Solution H	eat Treate		40.0	1		15.0	••		50	59				••••		· · · · ·
	X .212 in.	Solution H Worked	(76%), A	ed, Cold ged and	59.0			57.0			21	-	67 -					i
		Cold Wo	гкеа (28)	70)	69.0	J		53.0	• •		26	—	84 -	~	···	• • • •		'

The values listed above represent approximations suitable for general engineering use. Due to commercial variations in composition and to manufacturing limitations, they should not be used for specification purposes. See applicable A.S.T.M. specification references.

SCS

Specifications Equivalents

Alloy Number	DIN Material No.
C17200 Class IV Beryllium Copper	2.1247

Chemical Composition % by Weight

Ве	Ni+Co	Ni+Co+Fe	Cu
1.80 - 2.00	.02 min.	.06 max.	Balance

Material Properties

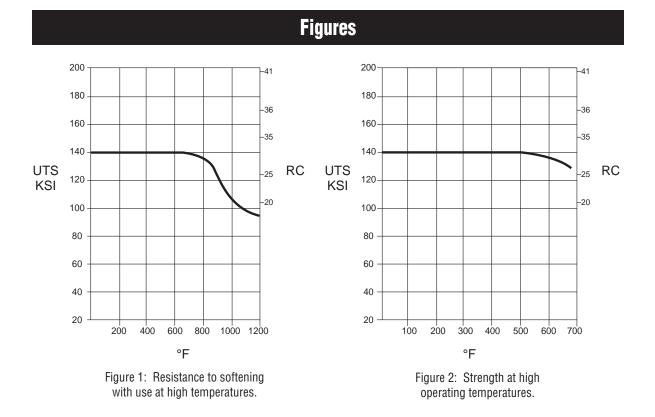
Precipitation hardened alloy with good thermal conductivity and high hardness. Not suitable for case hardening or nitrating.

Applications

Injection molds and high pressure blow molds. Inserts in steel molds for higher cooling rates at critical mold areas. Inserts in aluminum molds for higher strength and wear resistance. Cooling inserts in molds and casting molds. Nozzles and needles for hot runner systems.

Mechanical Properties

Hardness	Brinell	255-297	RC25-32
Tensile Strength**	KSI	130	
Yield Strength**	KSI	110	
Elongation**	%	7	
Elastic Modules	KSI	18,500	


*Hardness Conversions are approximate.

******Tensile Test values are nominal approximations and depend on specimen size and orientation.

r nysical r toper ties		
BTU/(ft hr F)	60	
BTU/lb/F	0.1	
in/in/F	9.7 x 10 ⁻⁶	
lb/cu in	0.298	
1350-1500°F	Air or Water Cooled	
Anneal 1425-1475°F in approx. HB 150	1/2 hr. & Water Quench	
Hardened 600°F to approx. HB 370	3 hr. Air Cool	
	BTU/(ft hr F) BTU/lb/F in/in/F lb/cu in 1350-1500°F Anneal 1425-1475°F in approx. HB 150 Hardened 600°F	

Physical Properties

***Class IV Beryllium Copper is pre-tempered to the correct strength. Hot forming and further heat treatment are not needed or recommended. Direct machining to desired configuration is preferred.

SCS

Machining Data

Machining	Tungsten Carbide	High Speed Steel
Turning		
cutting speed (SFM)	900 - 1200	200 - 300
rake angle (Deg)	10	10
feed (IPR)	.010	.025
Milling		
cutting speed (SFM)	300 - 600	150 - 200
rake angle (deg)	10	10
feed (inch/tooth)	.001003	.001003
depth of cut	.060125	.060125
Drilling		
cutting speed (SFM)		100 - 300
feed (IPR)		.002009

Specification Equivalents

Alloy Number	DIN Material No.
C17200 Class IV Beryllium Copper	2.1247

Chemical Composition % by Weight

Be	Ni + Co	Ni + Co+Fe	Cu
1.80 - 2.00	.02 min.	.06 max.	Balance

Material Properties

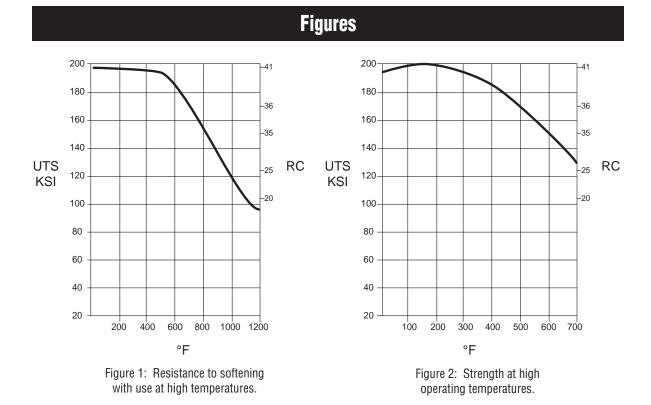
Precipitation hardened alloy with good thermal conductivity and high hardness. Not suitable for case hardening or nitrating.

Applications

Injection molds and high pressure blow molds. Inserts in steel molds for higher cooling rates at critical mold areas. Inserts in aluminum molds for higher strength and wear resistance. Cooling inserts in molds and casting molds. Nozzles and needles for hot runner systems.

Mechanical Properties

Hardness	Brinell	*332-393	RC36-43
Tensile Strength**	KSI	180	
Yield Strength**	KSI	155	
Elongation**	%	3	
Elastic Modules	KSI	18,500	


*Hardness Conversions are approximate.

******Tensile Test values are nominal approximations and depend on specimen size and orientation.

60 0.1 9.7 x 10 ⁻⁶
9.7 x 10 ⁻⁶
0.298
Air or Water Cooled
1/2 hr. & Water Quench
3 hr. Air Cool

Physical Properties

***Class IV Beryllium Copper is pre-tempered to the correct strength. Hot forming and further heat treatment are not needed or recommended. Direct machining to desired configuration is preferred.

<u>S</u>

Mac	hin	ing	Data
-----	-----	-----	------

Machining	Tungsten Carbide	High Speed Steel
Turning		
cutting speed (SFM)	900 - 1200	200 - 300
rake angle (Deg)	10	10
feed (IPR)	.010	.025
Milling		
cutting speed (SFM)	300 - 600	150 - 200
rake angle (deg)	10	10
feed (inch/tooth)	.001003	.001003
depth of cut	.060125	.060125
Drilling		
cutting speed (SFM)		100 - 300
feed (IPR)		.002009

Alloy Number	Specifications
UNS-C11000	SAE-CA110, ASTM-B133, B187

Specifications Equivalents

Chemical Composition % by Weight

Copper	Oxygen
99.90	.04

Material Properties

Hard drawn bus bar with high thermal and electrical conductivity. Good resistance and tampering. Not suitable for case hardening.

Applications

Copper No. 11000 is used for welding fixtures, anodes, bus bar in electrical power installations, ground straps, commutators, etc. Its inherent fabrication qualities readily permit it to be bent, soldered, drilled, peened, riveted and formed to fit almost any design specification.

wiechanical Properties			
Hardness*	Rockwell F Scale	94	
Tensile Strength**	PSI	48,000	
Yield Strength**	PSI	44,000	
Elongation**	%	10	
Shear Strength	PSI	29,000	

Mechanical Properties

*Hardness Conversions are approximate.

**Tensile Test values are nominal approximations and depend on specimen size and orientation.

GCS

Physical Properties

Thermal Conductivity	BTU/(sq ft-ft-hr-F)	226
Specific Heat	BTU/lb/F @ 68F	.092
Thermal Expansion	per °F from 68 F to 212 F	.0000094
Density	lb/cu in @ 68 F	.321323
Electrical Conductivity*	% IACS @ 68 F	101
Modules of Elasticity	PSI	17,000,000

*Based on specimen size and orientation.

Fabrication Properties

Capacity for Being Cold Worked	Excellent
Capacity for Being Hot Formed	Excellent
Hot Forgeability Rating (Forging Brass = 100)	65
Hot Working Temperature	1400-1600 F or 750-875 C
Annealing Temperature	700-1200 F or 375-650 C
Machinability Rating (Free Cutting Brass = 100)	20
Suitability for being joined by:	Soldering/Excellent Brazing/Good Oxyacetylene Welding/Not Recommended Gas Shielded Arc Welding/Fair Coated Metal Arc Welding/Not Recommended Spot/Not Recommeded
Resistance Welding	Seam/Not Recommended Butt/Good

Composition-percent

I

	Nominal	Minimum	Maximum	Nearest Applicable A S T M Specifications
Copper (incl. Silver)		99.90		Flat Products B11, B48, B101, B124, B133, B152, B187, B272, B370
Oxygen	.04			Pipe RodB188RodB12, B49, B124, B133, B187Shapes TubeB124, B133, B187, B283B111, B188, B447B111, B188, B447WireB1, B2, B3, B8, B33, B47, B49, B116, B189, B246, B286, B298, B355

Physical Properties

			C.G.S. Units		
1981	F	1083	С		
1949	F	1065	С		
.321323	lb/cu in @ 68 F	8.89 - 8.94	gm/cu cm @ 20 C		
8.89 - 8.94		8.89 - 8.94	-		
.0000094	per ° F from 68 F to 212 F	.0000170	per ° C from 20 C to 100 C		
.0000096	per ° F from 68 F to 392 F	.0000173	per ° C from 20 C to 200 C		
.0000098	per ° F from 68 F to 572 F	.0000177	per ° C from 20 C to 300 C		
226	Btu/sq ft/ft/hr/°F @ 68 F	.934	cal/sq cm/cm/sec/° C @ 20 C		
10.3	Ohms (circ mil/ft) @ 68 F	1.71	Microhm-cm @ 20 C		
101	% IACS @ 68 F	.586	Megmho-cm @ 20 C		
.092	Btu/lb °F @ 68 F	.092	cal/gm/°C @ 20 C		
17,000,000	psi	12,000	Kg/sq mm		
6,400,000	psi	4,500	Kg/sq mm		
	1949 .321323 8.89 - 8.94 .0000094 .0000096 .0000098 226 10.3 101 .092 17,000,000	.0000094 per ° F from 68 F to 212 F .0000096 per ° F from 68 F to 392 F .0000098 per ° F from 68 F to 572 F 226 Btu/sq ft/ft/hr/°F @ 68 F 10.3 Ohms (circ mil/ft) @ 68 F 101 % IACS @ 68 F .092 Btu/lb °F @ 68 F	1949 F 1065 .321323 lb/cu in @ 68 F 8.89 - 8.94 8.89 - 8.94 8.89 - 8.94 .0000094 per ° F from 68 F to 212 F .0000170 .0000096 per ° F from 68 F to 392 F .0000173 .0000098 per ° F from 68 F to 572 F .0000177 .0000098 per ° F from 68 F to 572 F .0000177 .026 Btu/sq ft/ft/hr/°F @ 68 F .934 10.3 Ohms (circ mil/ft) @ 68 F 1.71 101 % IACS @ 68 F .586 .092 Btu/lb °F @ 68 F .092 17,000,000 psi 12,000		

*Volume and Weight Basis

Typical Uses

ARCHITECTURAL:building fronts, downspouts, flashing, gutters, roofing, screening, spouting
gaskets, radiatorsAUTOMOTIVE:gaskets, radiatorsELECTRICAL:bus bars, conductivity wire, contacts, radio parts, switches, terminals
ball floats, butts, cotter pins, nails, rivets, soldering copper, tacksMISCELLANEOUS:anodes, chemical process equipment, kettles, pans, printing rolls, rotating
bands, road bed expansion plates, vats

Common Fabribation Processes

Blanking, coining, coppersmithing, drawing, etching, forming and bending, heading and upsetting, hot forging and pressing, piercing and punching, roll threading and knurling, shearing, spinning, squeezing and swaging, stamping

Fabrication Properties

Capacity for Being Cold Worked Excellent	Suitability for being joined by:
Capacity for Being Hot Formed Excellent	Soldering Excellent
Hot Forgeability Rating (Forging Brass = 100)	Brazing
Hot Working Temperature 1400-1600 F or 750-875 C	Oxyacetylene Welding Not Recommended
Annealing Temperature	Gas Shielded Arc WeldingFair
Machinability Rating (Free Cutting Brass = 100)	Coated Metal Arc Welding Not Recommended
	SpotNot Recommended

Resistance Welding

SeamNot Recommended ButtGood

COPPER No. C11000

Forms and Tempers Most Commonly Used	Annealed Tempers			Rolled or Dra	awn Tempers	Hot Finished Tempers	
	Nominal Grain Size mm			Hard	ard oring -General Purpose (1)) Bending (3) srs	
<u>.</u>	.100 .070 .050 .035 .035 .015	Soft Anneal Light Anneaf	Eighth Hard Quarter Hard	Three Quarter Hard Hard	Extra haro Spring Extra Spring Drawn—Gene	Hard Drawn (2) Light Drawn—B As Hot Rolled As Extruded Special Tempers	
Strip, Rolled	• • • • • • • • • • • • • • • • • • • •			• • • • • • • • • • • •			
Strip, Drawn							
Flat Wire, Rolled		. 🌰					
FLAT Flat Wire, Drawn		. 🌰	. <i> </i> .		• • • • • • • • • • • • • • • •		
PRODUCTS Bar, Rolled	•••••••••••••••••••••••••••••••••••••••	. 🌰			• • • • • • • • • • • • • • • • •		
Bar, Drawn		• • • • • •			• • • • • • • • • • • • • • • •		
Sheet		• • • • • •		•••••••	• • • • • • • • • • • • • • • • • • •		
Plate	• • • • • • • • • • • • • • • • • • • •	• • • • • •	• • • • • • • • • • •	••••••	• • • • • • • • • • • • • • • • • • • •	· · · · · · · · · · · · · · · · · · · · · ·	••••
ROD		• • • • • •			· · · · · · · · · · · · · · · · · · ·	•••••	
WIRE		• • • • • •	· · · • • · · • • · · ·		••••••		• • • •
TUBE PIPE	•••••	• • • • •				• • • • • • • • • • • • • • • • • • • •	
SHAPES		• • • • • •		· · · · · · · · · · · · · · · · · ·			• • • • • • • • • •

1. DRAWN-GENERAL PURPOSE temper is used for general purpose tube only, usually where there is no real requirement for high strength or hardness on the one hand or for bending qualities on the other.

2. HARD DRAWN temper is used only where there is need for a tube as hard or as strong as is commercially feasible for the size in question.

3. LIGHT DRAWN-BENDING temper is used only where a tube of some stiffness, but yet capable of readily being bent (or otherwise moderately cold worked) is needed.

Mechanica	l Propertie	9S	Tensile	Yield S (.5 Ext.	trength	Elonga-	_	ockwel	Shear		tique
Form	Size Section	Temper	Strength	under Load)	(.2% Offset)	in 2 in.		ardnes		1	ength
	in.	lemper	ksi	ksi	ksi	%	F	вз)T ksi	ksi	Million Cycles
FLAT PRODUCTS	.040 in. .025 in.	050 mm 025 mm Eighth Hard Quarter Hard Half Hard Hard Spring Extra Spring As Hot Rolled 050 mm	32.0 34.0 36.0 38.0 42.0 50.0 55.0 57.0 34.0 32.0	10.0 11.0 28.0 30.0 36.0 45.0 50.0 53.0 10.0 10.0	· · · · · · · · · · · · · · · · · · ·	45 45 30 25 14 6 4 4 45 50	40 45 60 70 84 90 94 95 45 40	10 25 40 50 60 62 62 62	5 25.0 6 25.0 0 26.0 7 28.0 3 29.0 4 29.0 - 23.0 - 22.0	11.0 13.0 13.0 14.0	100 100 100 100
	1.0 in.	Eighth Hard Quarter Hard Hard As Hot Rolled Hard	36.0 38.0 50.0 32.0 45.0	28.0 30.0 45.0 10.0 40.0	· · · · · · · · · · · · · ·	40 35 12 50 20	60 70 90 40 85	25 50	- 25.0 - 25.0 - 28.0 - 22.0 - 26.0	· · · · · · · · · · · · · ·	· · · · · · · · · · · · · ·
ROD	1.0 in. .250 in. 1.0 in 2.0 in. 1.0 in.	050 mm	32.0 55.0 48.0 45.0 32.0	10.0 50.0 44.0 40.0 10.0	· · · · · · · · · · · · · ·	55 10 16 20 55	40 94 87 85 40	60 47 45	- 22.0 - 29.0 - 27.0 - 26.0 - 22.0	 17.0 	100
WIRE	.080 in.	.050 mm	35.0 55.0 66.0	· · · · · · ·	 	35* 1.5** 1.5**	=		- 24.0 - 29.0 - 33.0	 	· · · · · · · · ·
TUBE	1.0 in. OD X.065 in.	.050 mm .025 mm Light Drawn (15%) Hard Drawn (40%)	32.0 34.0 40.0 55.0	10.0 11.0 32.0 50.0	 	45 45 25 8	40 45 77 95		- 23.0 5 26.0		
SHAPES	.500 in.	.050 mm Hard (15%) As Hot Rolled As Extruded	32.0 40.0 32.0 32.0	10.0 32.0 10.0 10.0	 	50 30 50 50	40 40 40	35 	- 26.0 - 22.0	· · · · ·	· · · · · · · · · ·
*Elongation in 10 inches. **Elongation in 60 inches.											

M

The values listed above represent approximations suitable for general engineering use. Due to commercial variations in composition and to manufacturing limitations, they should not be used for specification purposes. See applicable A.S.T.M. specification references.

Specification Equivalents

Copper Alloy Number	Specifications
C10100	SAE-CA102/ASTM-F68-68

Chemical Composition % by Weight

Copper	Residual Deoxidants	Phosphorus	Tellurium
99.99	-	.0003	.0010

Material Properties

High thermal and electrical conductivity and high ductility combined with low volatility makes this material indispensable in the electronic industry.

Applications

Some typical uses for Copper Alloy 10100 in the electrical and electronic are bus bars, bus conductors, wave guides, hollow conductors, lead-in wires and anodes for vaccum tubes, glass to metal seals and others.

Mechanical Properties

Hardness*	Rockwell F Scale	87
Tensile Strength**	PSI	48,000
Yield Strength**	PSI	44,000
Elongation**	%	15
Shear strength	PSI	-

*Hardness Conversions are approximate.

******Tensile Test values are nominal approximations and depend on specimen size and orientation.

كعك

Thysical Troperties					
Thermal Conductivity	BTU/(sq ft-ft-hr-F)	226			
Specific Heat	BTU/lb/°F @ 68F	.092			
Thermal Expansion	per °F from 68 F to 212 F	.0000094			
Density	lb/cu in @ 68 F	.323			
Electrical Conductivity*	% IACS @ 68 F	101			
Modulus of Elasticity	PSI	17,000,00 0			

Physical Properties

*Based on specimen size and orientation.

Fabrication Properties

Capacity for Being Cold Worked	Excellent
Capacity for Being Hot Formed	Excellent
Hot Forgeability Rating (Forging Brass = 100)	65
Hot Working Temperature	1400-1600 F or 750-875 C
Annealing Temperature	700-1200 F or 375-650 C
Machinability Rating (Free Cutting Brass = 100)	20
Suitability for being joined by:	Soldering/Excellent Brazing/Good Oxyacetylene Welding/Not Recommended Gas Shielded Arc Welding/Fair Coated Metal Arc Welding/Not Recommended Spot/Not Recommended
Resistance Welding	Seam/Not Recommended Butt/Good

Composition-percent

	Nominal	Minimum	Maximum
Copper Residual Deoxidants Phosphorus Tellurium Other Named Elements _{**}	· · · · ·	99.99 None 	.0003 .0010

Ł

*Hg, max., 1 ppm, (.0001%); Zn, max., 1 ppm, (.0001%); Cd, max., 1 ppm, (.0001%); S, max., 18 ppm, (.0018%); Pb, max., 10 ppm, (.0010%); Se, max., 10 ppm (.0010%); Bi, max., 10 ppm (.0010%); Oxygen max., 10 ppm, (.0010%).

Dhusiaal Dranartiaa

Nearest Applicable A S T M Specifications

Flat Products	B48, B133, B152, B187 B272, B432, F68
Pipe	B42, B188, F68
Rod	B12, B49, B133, B187, F68
Shapes	B133, B187, F68
Tube	B68, B75, B188, B280, B372, F68
Wire	B1, B2, B3, F68

**The total of the seven following elements, Se, Te, Bi, As, Sb, Sn and Mn not to exceed 40 ppm, (.0040%).

sical Properties		English Units		C.G.S. Units		
Melting Point (Liquidus)	1981	F	1083	С		
Melting Point (Solidus)	1981	F	1083	С		
Density	.323	lb/cu in @ 68 F	8.94	gm/cu cm @ 20 C		
Specific Gravity	8.94		8.94	-		
Coefficient of Thermal Expansion	.0000094	per ° F from 68 F to 212 F	.0000170	per ° C from 20 C to 100 C		
Coefficient of Thermal Expansion	.0000096	per ° F from 68 F to 392 F	.0000173	per ° C from 20 C to 200 C		
Coefficient of Thermal Expansion	.0000098	per ° F from 68 F to 572 F	.0000177	per ° C from 20 C to 300 C		
Thermal Conductivity	226	Btu/sq ft/ft/hr/°F @ 68 F	.934	cal/sq cm/cm/sec/° C @ 20 C		
Electrical Resistivity (Annealed)	10.3	Ohms (circ mil/ft) @ 68 F	1.71	Microhm-cm @ 20 C		
Electrical Conductivity* (Annealed)	101	% IACS @ 68 F	.586	Megmho-cm @ 20 C		
Thermal Capacity (Specific Heat)	.092	Btu/lb °F @ 68 F	.092	cal/gm/°C @ 20 C		
Modulus of Elasticity (Tension)	17,000,000	psi	12,000	Kg/sq mm		
Modulus of Rigidity	6,400,000	psi	4,500	Kg/sq mm		

*Volume and Weight Basis, minimum value

Typical Uses

ELECTRICAL AND bus bars, bus conductors and other conductors, wave guides, hollow conductors, lead-in wires and anodes ELECTRONIC: for vacuum tubes, vacuum scals, transistor components, glass to metal scals, coaxial cables and coaxial tubes, klystrons, micro-wave tubes, automotive rectifiers.

Common Fabrication Processes

Blanking, coining, coppersmithing, drawing, etching, forming and bending, heading and upsetting, hot forging and pressing, piercing and punching, roll threading and knurling, shearing, spinning, squeezing and swaging, stamping.

Fabrication Properties

Capacity for Being Cold Worked Excellent	Suitability for being joined by:
Capacity for Being Hot Formed Excellent	Soldering Excellent
Hot Forgeability Rating (Forging Brass = 100)	BrazingExcellent
Hot Working Temperature 1400-1600 F or 750-875 C	Oxyacetylene WeldingFair
Annealing Temperature	Gas Shielded Arc WeldingGood
Machinability Rating (Free Cutting Brass = 100)	Coated Metal Arc Welding Not Recommended
	SpotNot Recommended
	Resistance Welding Seam Not Recommended

COPPER No. C10100

Forms and Tempers Most Commonly Used	Annealed Tempers		Hot Finished Tempers
	Nominal Grain Size mm	Eighth Hard Duarter Hard Half Hard Three Quarter Hard Extra Hard Extra Ard Extra Spring Extra Spring Drawn — General Purpose (1) Hard Drawn (2)	As Hot Rolled As Extruded Special Tempers
	.100 .070 .050 .035 .035 .025 Soft Anneal	Eighth Hard Quarter Hard Half Hard Three Quarte Hard Extra Hard Spring Extra Spring Drawn—Gen Hard Drawn.	As Hot Rolled As Extruded Special Temp
Strip, Rolled Strip, Drawn Flat Wire, Rolled FLAT Flat Wire, Drawn PRODUCTS Bar, Rolled Bar, Drawn Sheet Plate ROD WIRE TUBE PIPE SHAPES			•••••••••••••••••••••••••••••••••••••••

1. DRAWN-GENERAL PURPOSE temper is used for general purpose tube only, usually where there is no real requirement for high strength or hardness on the one hand or for bending qualities on the other.

2. HARD DRAWN temper is used only where there is need for a tube as hard or as strong as is commercially feasible for the size in question.

3. LIGHT DRAWN-BENDING temper is used only where a tube of some stiffness, but yet capable of readily being bent (or otherwise moderately cold worked) is needed.

Mechanical Properties		Tensile	Yield S (.5 Ext.	trength	Elonga-	Elonga- tion Rockwell			Shear		Fatigue							
	Size		Strength	under Load)	(.2% Offset)	in 2 in.												əngth
Form	Section	Temper	ksi	ksi	ksi	%	F	в :	30T	ksi	ksi	Million Cycles						
	in.		KSI	KSI	KSI	90	r	D .	301	Kai	KSI	Cycles						
FLAT PRODUCTS	.040 in.	050 mm 025 mm Eighth Hard Quarter Hard Half Hard Hard	32.0 34.0 36.0 38.0 42.0 50.0	10.0 11.0 28.0 30.0 36.0 45.0	· · · · · · · · · · · · · · ·	45 45 30 25 14 6	40 45 60 70 84 90	10 25 40		22.0 23.0 25.0 25.0 26.0 28.0	11.0 13.0 13.0	100 100 100						
	.025 in. 1.0 in.	Spring	55.0 57.0 34.0 32.0 36.0 38.0 50.0 32.0 45.0	50.0 53.0 10.0 28.0 30.0 45.0 10.0 40.0	· · · · · · · · · · · · · · · · · · ·	4 45 50 40 35 12 50 20	94 95 45 40 60 70 90 40 85	60 62 	6364	29.0 29.0 23.0 22.0 25.0 25.0 28.0 22.0 22.0 22.0 26.0	14.0	100						
ROD	1.0 in. .250 in. 1.0 in 2.0 in. 1.0 in.	050 mm	32.0 55.0 48.0 45.0 32.0	10.0 50.0 44.0 40.0 10.0	 	55 10 16 20 55	40 94 87 85 40	60 47 45		22.0 29.0 27.0 26.0 22.0	17.0	100						
WIRE	.080 in.	.050 mm	35.0 55.0 66.0	· · · · · · ·	· · · · · · · · ·	35* 1.5** 1.5**			_	24.0 29.0 33.0	•••• ••••	 . <i></i>						
TUBE	1.0 in. OD X.065 in.	.050 mm .025 mm Light Drawn (15%) Hard Drawn (40%)	32.0 34.0 40.0 55.0	10.0 11.0 32.0 50.0	· · · · ·	45 45 25 8	40 45 77 95	35	 45 63	22.0 23.0 26.0 29.0	· · · · ·	 						
SHAPES	.500 in.	.050 mm Hard (15%) As Hot Rolled As Extruded	32.0 40.0 32.0 32.0	10.0 32.0 10.0 10.0	· · · · · · · · · · · · · · · · · · ·	50 30 50 50	40 40 40	35		22.0 26.0 22.0 22.0	· · · · ·	· · · · · · · · · · · · ·						

*Elongation in 10 inches.

**Elongation in 60 inches.

The values listed above represent approximations suitable for general engineering use. Due to commercial variations in composition and to manufacturing limitations, they should not be used for specification purposes. See applicable A.S.T.M. specification references.

SQUARES Class II & Class III	WT. /FT.
1/8 X 1/8	.05
3/8 X 3/8	.54
1/2 X 1/2	.96
5/8 X 5/8	1.50
3/4 X 3/4	2.16
1 X 1	3.84
1-1/4 X 1-1/4	6.00
1.1/2 X 1.1/2	8.64
2 X 2	15.36
HEXAGONS Class II & Class III	WT. /FT.
1/2	.839
3/4	1.89
7/8	2.50
1	3.36
1-1/4	5.25
1.1/2	7.55

Thickness X Width X

Length X .322 =

Approx. Total Weight

STANDARD BAR STOCK SIZES

ROUNDS Class II & Class III	WT. /FT.
1/8	.048
3/16	.106
1/4	.189 .296
5/16 3/8	.426
7/16	.577
.482	.701
1/2	.758
9/16	.961
5/8	1.18
3/4	1.70
7/8	2.32
1	3.03
1-1/8	3.84
1-1/4	4.74
1-3/8	5.76
1-1/2	6.82
1-5/8	8.01
1-3/4	9.36
	1040
2	12.12
2-1/4 2-1/2	15.48 18.96
2-1/2 2-3/4	23.00
2-3/4	23.00
3	27.14
3-1/8	29.64
3-1/4	32.20
3-1/2	37.30
3-5/8	39.11
0-5/0	
4-1/8	51.80
5-1/8	78.19
6-1/8	111.68
7-1/8	151.13
8-1/8	202.34
10-1/8	314.35

RECTANGLES Class II & Class III	WT. /FT.
1/4 X 1/2	.48
1/4 X 3/4	.72
1/4 X 1	.96
1/4 X 1-1/2	1.44
1/4 X 2	1.92
1/4 X 3	2.90
3/8 X 1/2	.73
3/8 X 3/4	1.08
3/8 X 1	1.45
3/8 X 1-1/2	2.17
3/8 X 2	2.91
1/2 X 5/8	1.21
1/2 X 3/4	1.44
1/2 X 1	1.92
1/2 X 1-1/2	2.88
1/2 X 2	3.84
1/2 X 2-1/2	4.80
1/2 X 3	5.76
1/2 X 4	7.73
5/8 X 3/4	1.80
5/8 X 1	2.40
5/8 X 1-1/2	3.60
5/8 X 2	4.80
3/4 X 1	2.88
3/4 X 1-1/4	3.63
3/4 X 1-1/2	4.32
3/4 X 1-3/4	5.07
3/4 X 2	5.76
3/4 X 2-1/2	7.20
3/4 X 3	8.64
1 X 1-1/4	4.85
1 X 1-1/2	5.76
1 X 2	7.68
1 X 2-1/2	9.60
1 X 3	11.52
1 X 4	15.46
1-1/4 X 1-1/2	7.25
1-1/4 X 2	9.66
1-1/2 X 2	11.52
1-1/2 X 3	17.28
	Annual Annual Contracts and

1/8 3/16 1/4 3/8 1/2 5/8 3/4 1

1-1/4

1-1/2

O.F.H.C. 101 AND ALLOY C-110

ROUNDS AND PLATES AVAILABLE

Cut To Your Specifications

ROUNDS

1/4 dia. × 12' ml
5/16 dia. × 12' ml
3/8 dia. × 12' ml
7/16 dia. × 12' ml
1/2 dia. × 12' ml
5/8 dia. × 12' ml
3/4 dia. × 12' ml
7/8 dia. × 12' mł
1 dia. × 12' ml
1 1/8 dia. × 12' ml
1 1/4 dia. × 12' ml
1 1/2 dia. × 12' ml
2 dia. × 12' ml
2 1/4 dia. × 12' ml
2 1/2 dia. × 12' ml
3 dia. × 12' ml
4 dia. × ml
5 dia. × ml
6 dia. × ml

PLATES

1/8 × 36 × 96
1/4 × 36 × 96
3/8 × 36 × 96
1/2 × 36 × 96
5/8 × 36 × 96
3/4 × 36 × 96
1 × 36 × 96
1 1/4 × 36 × 96
1 1/2 × 36 × 96
2 × 36 × 96
2 1/2 × 24 × 72
3 × 24 × 72
3 1/2 × 24 × 72
4 × 24 × 72

Manufacturer Cross Reference

RWMA		GI	ROUP A COPPI	ER BASE ALLO	DYS		GROUP B REFRACTORY METAL COMPOSITIONS				
MANUFACTURER	CLASS 1	CLASS 1A	CLASS 2	CLASS 3	CLASS 4	CLASS 5	CLASS 10	CLASS 11	CLASS 12	CLASS 13	CLASS 14
Ampco		Ampcoloy 98	Ampcoloy 97	Ampcoloy 940	Ampcoloy 84	Ampcoloy 92	Ampcoloy 40	Ampcoloy 42	Ampcoloy 43	Ampcoloy 80	
CMW	Elkaloy* A	CMW 2	CMW 3	CMW 100	CMW 73	Elkaloy ^e D	Elkonite ^e 1W3	Elkonite ^e 10W3	Elkonite ^e 30W3	Elkonite® 100W	Elkonite* 100M
Cadi	C-1	C-1A	C-2	C-3	C-4	C-5	C-1W	C-10	C-20	C-T	C-M
Centerline	Centerline CL-1	Centerline CL-1A	Centerline CL-2	Centerline CL-3	Centerline CL-4	Centerline CL-5	Centerline 1W3	Centerline 10W3	Centerline 20W3	Centerline 100W	Centerline 100M
Electroloy	Electroloy A	Electroloy 100-A	Electroloy XX	Electroloy TX	Electroloy B	Electroloy Molin-2	Electroloy 1	Electroloy 10	Electroloy 20	Electroloy 100	Electroloy 500
Hercules	H-1	H-1A	H-2	H-3	H-4	H-5	H-1W	H-10W	H-20W	H-100W	H-14M
Tipaloy	#100	100-A	#130	200/240	T-5	T-5	T-1W	T-10W	T-20W	T-100W	T-100M
Tuffaloy Products	Tuffaloy 88	Tuffaloy 88-A	Tuffaloy 77	Tuffaloy 55	Tuffaloy 44	Tuffaloy 66	Tuffaloy 1W	Tuffaloy 10W	Tuffaloy 20W	Tuffaloy 100W	Tuffaloy 100M
Weldaloy	Weldaloy 10	Weldaloy 20HC	Weldaloy 20	Weidaloy 60	Weldaloy 40	Weldaloy 50	Weldtung 10CT8	Weldtung 20CT	Weldtung 30CT	Weldtung W	Weldtung M
Welform	CL-1	CL-1A	CL-2	CL-3	CL-4	CL-5	W-1-W	W-10W	W-20W	W-100W	W-100M
Availability	Bars Forgings	Bars Forgings Castings	Bars Forgings Castings	Bars Forgings Castings	Bars Forgings Castings	Castings	Bars Inserts	Bars Inserts	Bars Inserts	Bars Inserts	Bars Inserts

Refactory materials are a combination of tungsten or tungsten carbide with copper and/or silver. The result is a very hard material with superior arc and wear resistance, and strength at elevated temperatures, yet retaining good thermal and electrical conductivity. The mechanical and physical properties vary with the composition. The thermal and electrical conductivity increases with the amount of copper or silver, while the hardness, strength and resistance to mechanical wear increase with the amount of tungsten or tungsten carbide. The application will determine the material choice.

RESISTANCE WELDING

Copper Tungsten Materials

Typical Physical and Mechanical Properties

1

RWMA Group B	Nominal Composition % Weight	Electrical Conductivity % IACS	Rockwell Hardness	Ultimate Strength PSI	Cross Breaking Strength PSI	Density GMS/CC	Accepted Material Designation	Typical Resistance Welding Applications
_	45% Copper 55% Tungsten	53	79B	63,000	110,000	12.6	Elkonite [®] 1W3	Flash and butt welding die inserts requiring high electrical and ther- mal conductivity. Electrode facings
	32% Copper 68% Tungsten	50	88B	75,000	130,000	13.93	Elkonite [®] 3W3	for the welding of stainless steel.
Class 10	30% Copper 70% Tungsten	48	90B	85,000	140,000	14.18	Elkonite [®] 5W3	Light duty projection welding dies where weld pressures are medium to light.
Class 11	25% Copper 75% Tungsten	46	98B	90,000	150,000	14.70	Elkonite® 10W3	Used for facings and inserts for flash and butt welding dies, projec- tion welding electrodes, seam welding bearing inserts, facings for electro-forming and electro-forging dies. Often used for EDM elec- trodes for greater wear ratios.
Class 11 & 12	22% Copper 78% Tungsten	44	99B	94,000	160,000	14.80	Elkonite [®] 20W3	CL 12 used where a slightly harder material is required for the same applications as CL 11.
Class 12	20% Copper 80% Tungsten	42	103B	98,000	170,000	15.4	Elkonite® 30W3	Heavy duty projection welding electrodes, die facings for electro- forming and electro-forging, also facings for upsetting of rivets and studs.
	25% Copper Alloy 75% Tungsten	28	109B	160,0 00	200,000	14.7	Elkonite [®] 10W53	Supplied in fully heat treated con- dition and must be heat treated after brazing. Used where temper- atures and pressures are relatively high for electro-forging and electri- cal upsetting.
	50% Copper 50% Tungsten Carbide	47	94B	70,000	140,000	11.27	Elkonite® TC-5	Light duty projection welding dies where pressures are not extreme but where abrasion may be en- countered.
_	44% Copper 56% Tungsten Carbide	42	99B	75,000	160,000	11.67	Elkonite® TC-10	Where abrasion is encountered for heavy duty projection welding elec- trode and die facings for electro- forming and electro-forging.
_	30% Copper 70% Tungsten Carbide	30	37C	85,000	180,000	12.6	Elkonite® TC-20	An extremely hard material, highly resistant to wear for electro-forging and upsetting, impractical to machine and should be ground.
	30% Copper Alloy 70% Tungsten Carbide	18	47C	150,000	220,000	12.6	Elkonite® TC-53	Extremely hard material requiring grinding. Supplied in fully heat treated condition and must be heat treated after brazing. Use in very abrasive applications for electical upsetting and electro-forging.

RECTANGULAR BARS 8" LONG

STANDARD TOLERANCE + .015-.000

THICKNESS x WIDTH
1/8 x 1/8 1/8 x 3/16
1/8 x 1/4
1/8 x 3/8 1/8 x 1/2
1/8 x 5/8
1/8 x 3/4 1/8 x 7/8
1/8 x 1 1/8 x 1-1/8
1/8 x 1-1/4
1/8 x 1-3/8 1/8 x 1-1/2
1/8 x 1-5/8
<u>1/8 x 1-3/4</u> 1/8 x 2
1/8 x 3
1/8 x 4 3/16 x 3/16
3/16 x 1/4 3/16 x 3/8
3/16 x 1/2
3/16 x 5/8 3/16 x 3/4
3/16 x 7/8
3/16 x 1 3/16 x 1-1/8
<u>3/16 x 1-1/4</u> <u>3/16 x 3/8</u>
3/16 x 1-1/2
3/16 x 1-5/8 3/16 x 1-3/4
3/16 x 2
3/16 x 3 3/16 x 4
1/4 x 1/4 1/4 x 3/8
1/4 x 1/2
1/4 x 5/8 1/4 x 3/4
1/4 x 7/8 1/4 x 1
1/4 x 1-1/8
1/4 x 1-1/4 1/4 x 1-3/8
1/4 x 1-1/2
1/4 x 1-5/8 1/4 x 1-3/4
1/4 x 2
1/4 x 3 1/4 x 4
3/8 x 3/8 3/8 x 1/2
3/8 x 5/8
3/8 x 3/4 3/8 x 7/8
3/8 x 1
3/8 × 1-1/8 3/8 × 1-1/4
3/8 x 1-3/8 3/8 x 1-1/2
3/8 x 1-5/8
3/8 x 1-3/4 3/8 x 2
3/8 x 3
3/8 x 4 1/2 x 1/2
1/2 x 5/8
1/2 x 3/4

THICKNESS x WIDTH
1/2 x 7/8
1/2 x 1 1/2 x 1-1/8
1/2 x 1-1/4
1/2 x 1-3/8
1/2 x 1-1/2
1/2 x 1-5/8 1/2 x 1-3/4
1/2 x 2
1/2 x 3
<u>1/2 x 4</u> 5/8 x 5/8
5/8 x 3/4
5/8 x 7/8
5/8 x 1
<u> </u>
5/8 x 1-3/8
5/8 x 1-1/2
5/8 x 1-5/8
<u>5/8 x 1-3/4</u> 5/8 x 2
5/8 x 3
5/8 x 4
3/4 x 3/4
3/4 x 7/8 3/4 x 1
3/4 x 1-1/8
3/4 x 1-1/4
3/4 x 1-3/8
3/4 x 1-1/2 3/4 x 1-5/8
3/4 x 1-3/4
3/4 x 2
3/4 x 3
<u>3/4 × 4</u> 7/8 × 7/8
7/8 x 1
7/8 x 1-1/8
7/8 x 1-1/4
7/8 x 1-3/8 7/8 x 1-1/2
7/8 x 1-5/8
7/8 x 1-3/4
7/8 x 2
7/8 x 3 7/8 x 4
1 x 1
1 x 1-1/8
1 x 1-1/4
1 x 1-3/8 1 x 1-1/2
1 x 1-5/8
1 x 1-3/4
1 x 2
1 x 3 1 x 4
1-1/8 x 1-1/8
1-1/4 x 1-1/4
1-1/4 x 1-1/2
1-1/4 x 1-3/4 1-1/4 x 2
1-1/2 x 1-1/2
1-1/2 x 2
1-5/8 x 2
1-3/4 x 1-3/4
1-3/4 x 2
2 x 2

ROUND BARS

8" LONG

STANDARD TOLERANCE + .010-.000

FINISHED DIAMETER
1/8
3/16
1/4
5/16
3/8
7/16
1/2
9/16
5/8
3/4
7/8
1
1-1/8
1-1/4
1-3/8
1-1/2
1-5/8
1-3/4
2
2-1/4
2-1/2

12" LONG STANDARD

TOLERANCE + .050-.000

FINISHED DIAMETER
1/8
3/16
1/4
5/16
3/8
7/16
1/2
9/16
5/8
3/4
7/8
1

DISC

STANDARD TOLERANCE + .050-.000

	DIAMETER x THICKNESS
	3/8 x 3/16
	3/8 x 1/4
	1/2 x 3/16
	1/2 x 1/4
	5/8 x 1/4
Special Sizes	3/4 x 1/4
opcolar oleoo	7/8 x 1/4
Available Upon	1 x 1/4
Available upon	1-1/4 x 1/4
Denvert	1-3/8 x 1/4
Request	1-1/2 x 1/4
•	1-3/4 x 1/4
	2 x 1/4

Class 13 = (Tungsten) Class 14 = (Molybdenum)

Class 13 and 14 materials are recommended principally for welding or electro-brazing non-ferrous metals having relatively high electrical conductivity.

Cross wire welding of copper and brass wires and welding of copper wire braid to brass and bronze terminals are typical applications. Generally, special set-ups and procedures are required for this type of work.

Also available Silver Tungsten

S35WS S20WS S50WS

BRASS AND BRONZE

Alloy 360 Brass

(C36000 Free-Cutting Brass)

Alloy 360 Brass resists corrosion and is easily soldered or brazed. Gears and pinions are among many applications that 360 Brass is used. This alloy is also used in high speed screw machine parts and has a machinability rating of 100%.

Alloy 464 Naval Brass

(C46400)

Alloy 464 Naval Brass is recommended for marine hardware and pump shafts as well as nuts, bolts, rivets, and valve stems. It is highly known for resisting corrosion in seawater even at higher than normal temperatures. This alloy is excellent for hot working. Naval Brass is 40% zinc brass and 1% tin and is easily soldered, brazed and welded.

Alloy 932 Bearing Bronze

(C93200 Bearing Bronze 660)

Alloy 932 Bearing Bronze is recommended for bearings, bushings and wear plates. This alloy also resists corrosion in seawater but not as well as the Alloy 464 Naval Brass. Bearing Bronze is used for pump and valve components as well as automotive equipment and hoists. Alloy 932 has good machining capabilities and excellent antifriction qualities.

Alloy 954 Aluminum Bronze

(C95400 Aluminum Bronze)

There are many recommended uses for 954 Aluminum Bronze some of which include weld guns, nuts, bearings, pump parts, bushings and gears. This all-purpose alloy resists wear and deformation under extreme loads and stress. Alloy 954 has a machinability rating of 60% along with high ductility and weldability.

The alloys above are available in diameters, rectangles, squares, hex, and tubing. Other Brass and Bronze alloys are also available upon request.

Seam Welding Wheels are definitely not as widely used as they were ten years ago. The availability of some alloys or R.W.M.A classes of copper are becoming harder and harder to acquire.

FACT OR FICTION:

All weld wheels are made the same.

FICTION

All welding wheels seam are not manufactured the same. There are distributors and manufacturers that supply weld wheels that are cast billet, cut to thickness, and then heat treated to meet R.W.M.A. standards for hardness and conductivity. This method of producing weld wheels will work in some instances. When researching wheels, initially, this method is cheaper. Over a year's period, production versus total costs, (including cost of the wheels, dressing and change over), Southern Copper can offer an alternative to cast billet weld wheels that will last longer and be more cost effective. We can offer forged weld wheels in sizes and alloys that will best meet your application needs. Southern Copper's pricing, availability and the quality of product will definitely be an advantage to your company.

RWMA CLASS 2

HARDNESS: 65 ROCKWELL "B" MINIMUM CONDUCTIVITY: 75% I.A.C.S. MINIMUM

RWMA CLASS 2 PREMIUM

HARDNESS: 75 ROCKWELL "B" MINIMUM CONDUCTIVITY: 75% I.A.C.S. MINIMUM

FACT

The most commonly used alloy for weld wheels is R.W.M.A. Class 2 Copper. This alloy is recommended for seam welding hot-rolled and cold rolled steels. It is sometimes used for welding coated metals as well.

When one is welding thicker gages, or where higher pressures maybe needed to secure the proper weld bead, Southern Copper recommends R.W.M.A. alloy Class 2 Premium weld wheel. The hardness of these wheels (approximately 75 Rockwell "B" for Class 2 Premium compared to 65 Rockwell "B" minimum for standard Class 2 weld wheel). The conductivity for both wheels is 75% I.A.C.S.. This classification can also fall into two different alloys, C18200 and C18150. Southern Copper stocks the C18200 weld wheel.

FICTION

Some distributors claim that they can supply Class 2 Premium weld wheels in a much harder condition (hardness of 80 or higher). Our answer to this statement is they are trying to sell you a "bill of goods". Although Class 2 Premium weld wheels do typically range from a Rockwell "B" hardness of 75-82, no manufacturer or distributor can guarantee a minimum hardness of 80. Also, material with higher hardness can lead to stress fractures in the wheel when welding.

SEAM WELDING WHEELS

FACT

This R.W.M.A. Classification is covered by two different alloys, Alloy C18000 and Alloy C17510.

R.W.M.A. Class 3 (C17510) is primarily used for seam welding stainless steel, as well as where high temperatures may be needed to insure proper welds. Most machinists find it easier to machine. However, the cost of this alloy is usually much higher than the R.W.M.A. Class 3 (C18000).

R.W.M.A. Class 3 (C18000). is primarily used for seam welding where high temperatures are needed, as well as hot and cold rolled steel, as well as some coated metals. It also can be used to weld stainless steel, given strict use of certain parameters.

FICTION

All distributors or manufacturers disclose the alloy or R.W.M.A. classification they are using to manufacture your weld wheel. Resistance Welding Manufacturers Association standards do not require the distributor or manufacturer to disclose the classification or alloy of the material they are using to produce your weld wheel. Therefore, if you are having a problem with your welding processes, it may not be the R.W.M.A. Class of material you are using, but the alloy.

RWMA CLASS 3 (C17510)

HARDNESS: 90 ROCKWELL "B" MINIMUM CONDUCTIVITY: 45% I.A.C.S. MINIMUM

RWMA CLASS 3 (C18000)

HARDNESS: 90 ROCKWELL "B" HARDNESS CONDUCTIVITY: 45% I.A.C.S. MINIMUM **OTHER R.W.M.A CLASSIFICATIONS:**

FACT

This R.W.M.A. Class can be found in smaller diameters, and very few rectangles/ or squares, but is very unlikely to be found in forged discs as forgings, which are used for seam welding. These coppers are used for welding aluminum, some coated metals, and hot and cold rolled steels.

R.W.M.A. Class 1 - C16200 OR C15000 HARDNESS: 55 ROCKWELL "B" MINIMUM CONDUCTIVITY: 75% I.A.C.S. MINIMUM

Convert 0.588 inches into millimeters 0.580 inches = 14.73 millimeters 0.008 inches = 0.203 millimeters $\overline{0.588}$ inches = 14.933 millimeters

Convert 3.065 inches into millimeters inches = 76.2002 millimeters

Convert 2-51/64 inches into millimeters 2-25/32 inches = 70.6439 millimeters 1/64 inches = 0.3969 millimeters 2-51/64 inches = 71.0408 millimeters

0.060 inches = 1.524 millimeters 0.005 inches = 0.127 millimeters 3.065 inches = 77.8512 millimeters

Due to the current move to convert or switch from inches to the metric system as a universal measuring system we are including the three tables below to allow conversion from inches into millimeters.

Examples:

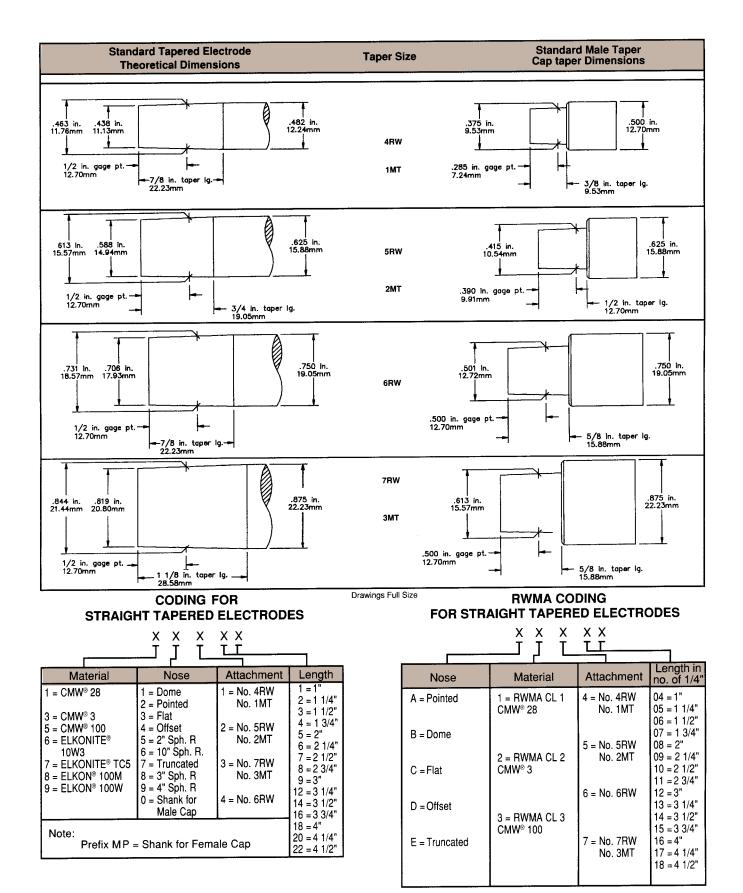
From Table I From Table I Total

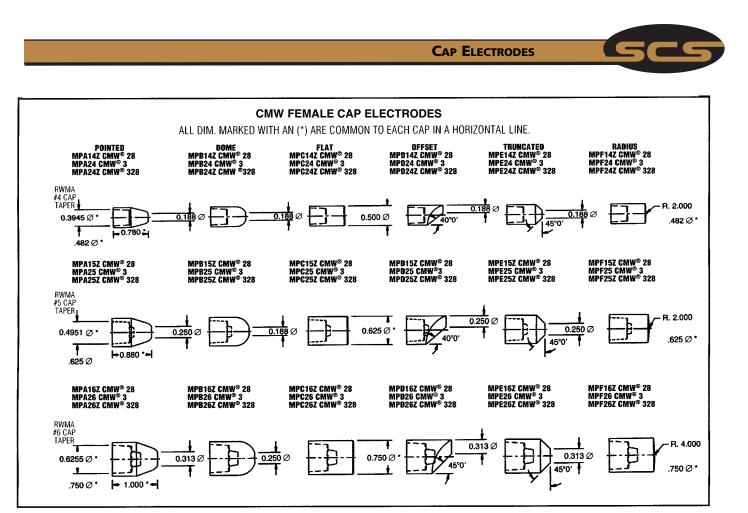
	Table II
From	Table I
From	Table I
	Total

3

From	Table II
From	Table II
	Total

TABLE I **Decimals of** an inch into millimeters


		Milli-		Milli-
	Inches	meters	Inches	meters
	0.001 0.002	0.025 0.051	0.460 0.470	11.68 11.94
	0.003	0.076	0.480	11.94
	0.004 0.005	0.102 0.127	0.490 0.500	12.45 12.70
	0.005	0.152	0.510	12.95
	0.007	0.178	0.520	13.21
	0.008	0.203	0.530 0.540	13.26 13.72
	0.009	0.225	0.550	13.97
	0.020	0.508	0.560	14.22
	0.030	0.762	0.570 0.580	14.48 14.73
	0.040	1.016	0.590	14.99
	0.050	1.270	0.600	15.24
	0.060 0.070	1.524 1.778	0.610 0.620	15.49 15.75
	0.080	2.032	0.630	16.00
	0.090	2.286	0.640	16.26
	0.100	2.540 2.794	0.650	16.51 16.76
	0.110 0.120	2.794 3.048	0.660	17.02
	0.130	3.302	0.680	17.27
	0.140 0.150	3.56 3.81	0.690 0.700	17.53 17.78
	0.160	4.06	0.710	18.03
	0.170	4.32	0.720	18.29
	0.180 0.190	4.57 4.83	0.730 0.740	18.54 18.80
	0.200	5.08	0.750	19.05
	0.210	5.33	0.760	19.30
	0.220 0.230	5.59 5.84	0.770 0.780	19.56 19.81
	0.230	6.10	0.790	20.07
	0.250	6.35	0.800	20.32
	0.260 0.270	6.60 6.86	0.810 0.820	20.57 20.83
	0.270	7.11	0.820	20.83
	0.290	7.37	0.840	21.34
	0.300	7.62	0.850	21.59 21.84
	0.310 0.320	7.87 8.13	0.860 0.870	21.84 22.10
	0.330	8.38	0.880	22.35
	0.340 0.350	8.64 8.89	0.890 0.900	22.61 22.86
For Taper Dimensions	0.360	9.14	0.910	23.11
	0.370	9.40	0.920	23.37
in inches	0.380 0.390	9.65 9.91	0.930 0.940	23.62 23.88
and millimeters	0.390	10.16	0.940	24.13
minneters	0.410	10.41	0.960	24.38
	0.420	10.67 10.92	0.970 0.980	24.64 24.89
	0.430 0.440	10.92	0.980	24.89 25.15
	0.450	11.43	1.000	25.40


TABLE II
Fractions of
an inch into
millimeters

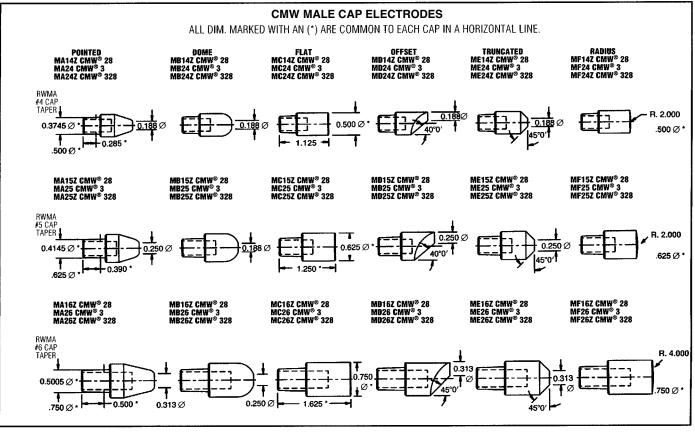
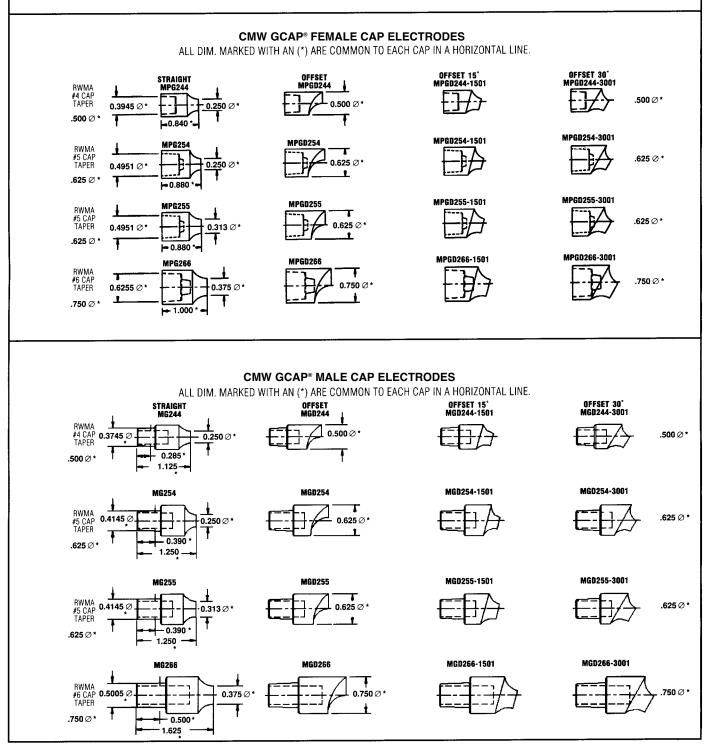

Inches	Milli- meters	Inches	Milli- meters
1⁄64	0.3969	³³ /64	13.0969
1⁄32	0.7937	17/32	13.4937
3⁄64	1.1906	³⁵ ⁄64	13.8906
1⁄16	1.5875	%16	14.2875
5/64	1.9844	³⁷ /64	14.6844
3⁄32	2.3812	¹⁹ /32	15.0812
7/64	2.7781	³⁹ ⁄64	15.4781
1⁄8	3.1750	5⁄8	15.8750
⁹ ⁄64	3.5719	41/64	16.2719
5/32	3.9687	²¹ /32	16.6687
11/64	4.3656	⁴³ ⁄64	17.0656
3⁄16	4.7625	11/16	17.4625
¹³ ⁄64	5.1594	⁴⁵ ⁄64	17.8594
7/32	5.5562	²³ /32	18.2562
¹⁵ /64	5.9531	⁴⁷ /64	18.6531
1⁄4	6.3500	3⁄4	19.0500
17/64	6.7469	⁴⁹ ⁄64	19.4469
%32	7.1437	²⁵ /32	19.8437
¹⁹ ⁄64	7.5406	⁵¹ /64	20.2406
5⁄16	7.9375	¹³ ⁄16	20.6375
²¹ /64	8.3344	⁵³ ⁄64	21.0344
¹¹ /32	8.7312	²⁷ /32	21.4312
²³ ⁄64	9.1281	⁵⁵ ⁄64	21.8281
3⁄8	9.5250	7∕8	22.2250
²⁵ ⁄64	9.9219	57/64	22.6219
¹³ /32	10.3187	²⁹ /32	23.0187
²⁷ /64	10.7156	⁵⁹ ⁄64	23.4156
7⁄16	11.1125	¹⁵ ⁄16	23.8125
²⁹ ⁄64	11.5094	⁶¹ /64	24.2094
¹⁵ /32	11.9062	³¹ /32	24.6062
³¹ /64	12.3031	⁶³ /64	25.0031
1/2	12.7000	1	25.4001

TABLE III Gage-Decimal-**Millimeter Conversion** Chart

Gage	Decimal	Millimeter
3	.239	6.350
4	.234	5.953
5	.209	5.556
6	.194	5.159
7	.179	4.762
8	.164	4.365
9	.150	3.968
10	.135	3.571
11	.120	3.175
12	.105	2.778
13	.090	2.381
14	.075	1.984
15	.067	1.778
16	.060	1.587
17	.054	1.422
18	.048	1.270
19	.042	1.118
20	.036	.965
21	.033	.865
22	.030	.793
23	.027	.711
24	.024	.635
25	.021	.559
26	.018	.483
27	.016	.432
28	.015	.396
29	.014	.356
30	.012	.330
31	.011	.279
32	.010	.254 .229
33	.009	
34 35	.0082	.216
35	.008	.203
36	.007	.178
37	.0064	.168
30	.000	.152

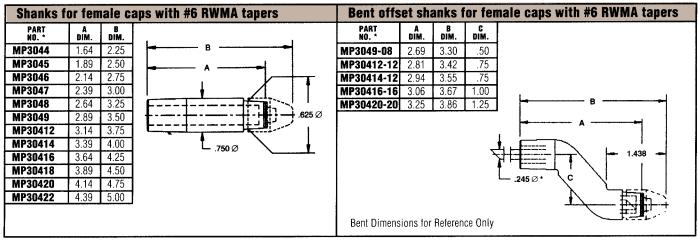
DIMENSIONS ARE IN INCHES.


SEE PAGES 39 AND 40 FOR SHANKS.

The CMW GCAP[®] electrode is the answer to welding galvanized steels. The GCAP's[®] revolutionary design, and precision manufacturing from CMW Engineering provides for no sticking from the very first weld. GCAP[®] electrode nuggets meet or exceed industry standards for high quality welds from the first weld through the life of the cap. This cap design made from R.W.M.A. Class II material eliminates brass build-up by literally rolling the brass away. You will use electric power (up

to 25% less) and still achieve superior welds due to $\text{GCAP}^{\text{(B)}}$ design. Productivity will increase with up to 10 times more welds without dressing.

For best use of CMW GCAPS[®], a stepper program is recommended. Consult CMW application engineering. *U.S. Patent 4,954,687; 5,015,816; 5,126,528. Other patents pending.

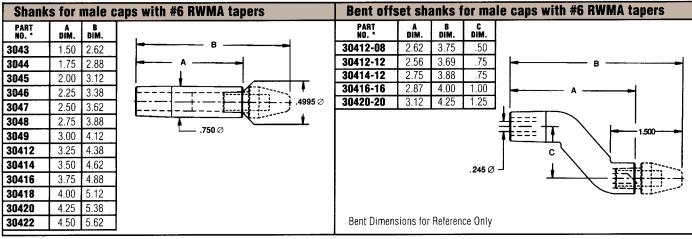

DIMENSIONS ARE IN INCHES. SEE PAGES 39 AND 40 FOR SHANKS.

*GCap® is a registered trademark owned by CMW.

SHANKS FOR FEMALE CAPS

Shanks f	or fen	nale c	aps with #4 RWMA tapers	Bent offs	et sha	anks f	or fe	male caps with #4 RWMA tap
PART NO. *	A Dim.	B Dim.		PART NO. *	A DIM.	B DiM.	C Dim.	
MP3012	1.25	1.75		MP3019-08	2.62	3.28	.50	
MP3013	1.50	2.00		MP3019-12	2.56	3.22	.75	
MP3014	1.75	2.25		MP30112-12	2.81	3.47	.75	
MP3015	2.00	2.50		MP30112-16	2.37	3.03	1.00	В
MP3016	2.25	2.75		MP30116-16	2.87	3.53	1.00	A
MP3017	2.50	3.00		MP30116-20	2.60	3.28	1.25	
MP3018	2.75	3.25	400 Ø				2	
MP3019	3.00	3.50						
MP30112	3.25	3.75	482 Ø					
MP30114	3.50	4.00						
MP30116	3.75	4.25						
MP30118	4.00	4.50						

Shanks f	or fem	ale c	aps with #5 RWMA tapers	Bent offs	et sha	anks f	or fei	male caps with #5 RWMA tapers
PART No. *	A Dim.	B DIM.		PART No. *	A Dim.	B Dim.	C Dim.	
MP3023	1.46	2.00	1 - I	MP3029-08	2.58	3.20	.50	
MP3024	1.71	2.25	B	MP3029-12	2.60	3.12	.75	Б — — — в — — — — — — — — — — — — — — —
MP3025	1.96	2.50	A	MP30212-12	2.77	3.44	.75	
MP3026	2.21	2.75		MP30212-16	2.33	3.00	1.00	A
MP3027	2.46	3.00		MP30214-12	3.00	3.66	.75	
MP3028	2.71	3.25	.502 Ø	MP30214-16		3.48	1.00	
MP3029	2.96	3.50		MP30216-16	2.83	3.49	1.00	
MP30212	3.21	3.75	.625 Ø	MP30216-20	2.77	3.43	1.25	L.245Ø C
MP30214	3.46	4.00	.023 Ø					
MP30216	3.71	4.25						
MP30218	3.96	4.50						
MP30220	4.21	4.75						
MP30222	4.46	5.00						
				Bent Dimens	sions for	Referen	ce Only	



DIMENSIONS ARE IN INCHES.

SEE PAGES 37 AND 38 FOR STANDARD AND GCAP® ELECTRODE CAPS.

Shank	cs for	male c	aps with #4 RWMA tapers	Bent offs	set sha	anks f	ior ma	le caps with #4 RWMA tapers
PART NO. *	A DIM.	B Dim.	ha	PART NO. *	A DIM.	B Dim.	C Dim.	
3012	1.25	1.88		3019-08	2.62	3.37	.50	
3013	1.50	2.12		3019-12	2.56	3.31	.75	
3014	1.75	2.38	3735 Ø	30112-12	2.81	3.56	.75	
3015	2.00	2.62		30112-16	2.37	3.12	1.00	
3016	2.25	2.88	└ .48 2 Ø	30116-16	2.87	3.62	1.00	
3017	2.50	3.12		30116-20	2.62	3.37	1.25	A
3018	2.75	3.38						
3019	3.00	3.62						
30112	3.25	3.88						182Ø C
30114	3.50	4.12						
30116	3.75	4.38						
30118	4.00	4.62						
				Bent Dimen	sions for	Referen	ce Only	

Shank	s for	male o	caps with #5 RWMA tapers	Bent offs	set sha	anks f	'or ma	le caps with #5 RWMA tapers
PART NO. *	A DIM.	B DIM.	la Romand	PART NO. *	A Dim.	B Dim.	C Dim.	
3022	1.25	2.00		3028-08	2.37	3.12	.50	
3023	1.50	2.25		3028-12	2.31	3.06	.75	B
3024	1.75	2.50		30212-12	2.81	3.56	.75	
3025	2.00	2.75	4135 Ø	30212-16	2.37	3.12	1.00	│
3026	2.25	3.00		30214-12	3.06	3.81	.75	
3027	2.50	3.25	.625 Ø	30214-16	2.62	3.37	1.00	
3028	2.75	3.50						
3029	3.00	3.75		30214-20	2.37	3.12	1.25	└245∅ C
30212	3.25	4.00		30216-16	2.87	3.62	1.00	
30214	3.50	4.25		30216-20	2.62	3.37	1.25	
30216	3.75	4.50]					
30218	4.00	4.75]					
30220	4.25	5.00]	D t Dimore	- : :	D . (
30222	4.50	5.25		Bent Dimen	SIONS TOP	Keieren	ce uniy	

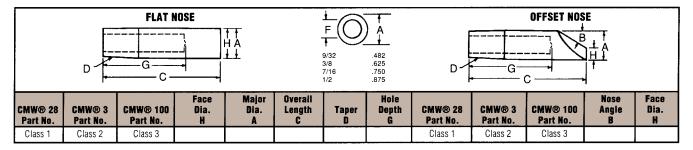
DIMENSIONS ARE IN INCHES.

SEE PAGES 37 AND 38 FOR STANDARD AND GCAP® ELECTRODE CAPS.

STRAIGHT ELECTRODES

SCS

	D	G G G	E NOSE			9/32 .482 3/8 .625 7/16 .750 1/2 .875				D G C B					
CMW [®] 28 Part No.	CMW® 3 Part No.	CMW [®] 100 Part No.	Nose Length B	Face Dia. H	Major Dia. A	Overall Length C	Taper D	Hole Depth G	CMW [®] 28 Part No.	CMW® 3 Part No.	CMW [®] 100 Part No.	Nose Length B	Face Dia. H		
Class 1	Class 2	Class 3							Class 1	Class 2	Class 3				
		-				4RW (# 1MT)								


1111 1112 1113	3111 3112 3113	5111 5112 5113	13/64 1/4 1/4			1 1-1/4 1-1/2		5/8 3/4 1	1211 1212 1213	3211 3212 3213	5211 5212 5213	3/8 3/8 5/8	
1114 1115 1116	3114 3115 3116	5114 5115 5116	1/4			1-3/4 2 2-1/4	4RW	1-1/4 1-1/2 1-3/4	1214 1215 1216	3214 3215 3216	5214 5215 5216	3/4	
1117 1118 1119	3117 3118 3119	5117 5118 5119	1/4	3/16	.482	2-1/2 2-3/4 3	OR	2 2-1/4 2-1/2	1217 1218 1219	3217 3218 3219	5217 5218 5219	3/4	3/16
11112 11114 11116	31112 31114 31116	51112 51114 51116	1/4			3-1/4 3-1/2 3-3/4	1MT	2-3/4 3 3-1/4	12112 12114 12116	32112 32114 32116	52112 52114 52116	3/4	
11118	31118	51118	1/4			4		3-1/2	12118	32118	52118	3/4	

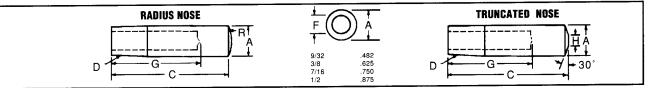
5RW (# 2MT)

1122 1123 1124	3122 3123 3124	5122 5123 5124	3/8			1-1/4 1-1/2 1-3/4		3/4 3/4 1	1222 1223 1224	3222 3223 3224	5222 5223 5224	1/2 3/4 3/4	
1125 1126 1127	3125 3126 3127	5125 5126 5127	3/8			2 2-1/4 2-1/2	5RW	1-1/4 1-1/2 1-3/4	1225 1226 1227	3225 3226 3227	5225 5226 5227	1-1/8	
1128 1129 11212	3128 3129 31212	5128 5129 51212	3/8	1/4	.625	2-3/4 3 3-1/4	OR	2 2-1/4 2-1/2	1228 1229 12212	3228 3229 32212	5228 5229 52212	1-1/8	1/4
11214 11216 11218	31214 31216 31218	51214 51216 51218	3/8			3-1/2 3-3/4 4	2MT	2-3/4 3 3-1/4	12214 12216 12218	32214 32216 32218	52214 52216 52218	1-1/8	
11220 11222	31220 31222	51220 51222	3/8			4-1/4 4-1/2		3-1/2 3-3/4	12220 12222	32220 32222	52220 52222	1-1/8	

Electrodes of other tapers and alloys available upon request.

STRAIGHT ELECTRODES

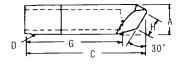
4RW (# 1MT)


1311 1312 1313	3311 3312 3313	5311 5312 5313			1 1-1/4 1-1/2		5/8 3/4 1	1411 1412 1413	3411 3412 3413	5411 5412 5413	45° 40° 30°	
1314 1315 1316	3314 3315 3316	5314 5315 5316			1-3/4 2 2-1/4	4RW	1-1/4 1-1/2 1-3/4	1414 1415 1416	3414 3415 3416	5414 5415 5416	30°	
1317 1318 1319	3317 3318 3319	5317 5318 5319	.482	.482	2-1/2 2-3/4 3	OR	2 2-1/4 2-1/2	1417 1418 1419	3417 3418 3419	5417 5418 5419	30°	3/16
13112 13114 13116	33112 33114 33116	53112 53114 53116			3-1/4 3-1/2 3-3/4	1MT	2-3/4 3 3-1/4	14112 14114 14116	34112 34114 34116	54112 54114 54116	30°	
13118	33118	53118			4		3-1/2	14118	34118	54118	30°	

5RW (# 2MT)

1322 1323 1324	3322 3323 3324	5322 5323 5324			1-1/4 1-1/2 1-3/4		3/4 3/4 1	1422 1423 1424	3422 3423 3424	5422 5423 5424	40° 40° 30°	
1325 1326 1327	3325 3326 3327	5325 5326 5327			2 2-1/4 2-1/2	5RW	1-1/4 1-1/2 1-3/4	1425 1426 1427	3425 3426 3427	5425 5426 5427	30°	
1328 1329 13212	3328 3329 33212	5328 5329 53212	5/8	.625	2-3/4 3 3-1/4	OR	2 2-1/4 2-1/2	1428 1429 14212	3428 3429 34212	5428 5429 54212	30°	1/4
13214 13216 13218	33214 33216 33218	53214 53216 53218			3-1/2 3-3/4 4	2MT	2-3/4 3 3-1/4	14214 14216 14218	34214 34216 34218	54214 54216 54218	30°	
13220 13222	33220 33222	53220 53222			4-1/4 4-1/2		3-1/2 3-3/4	14220 14222	34220 34222	54220 54222	30°	

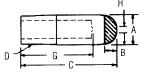
Electrodes of other tapers and alloys available upon request.

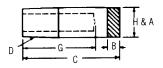

STRAIGHT ELECTRODES

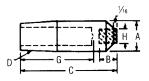
CMW® 28 Part No.	CMW® 3 Part No.	CMW® 100 Part No.	Major Dia. A	Overall Length C	Taper D	Hole Depth G	Spherical Radius R
Class 1	Class 2	Class 3					
1523 1525 1527	3523 3525 3527	5523 5525 5527		1-1/2 2 2-1/2		3/4 1-1/4 1-3/4	2
1529 15218	3529 35218	5529 56218		3 4		2-1/4 3-1/4	
1623 1625 1627	3623 3625 3627	5623 5625 5627	.625	1-1/2 2 2-1/2	5RW OR	3/4 1-1/4 1-3/4	10
1629 16218	3629 36218	5629 56218		3 4	2MT	2-1/4 3-1/4	
1825 1829	3825 3829	5825 5829		2 3		1-1/4 2-1/4	3
1925 1929	3925 3929	5925 5929		2 3		1-1/4 2-1/4	4

CMW® 28 Part No.	CMW® 3 Part No.	CMW® 100 Part No.	Major Dia. A	Overall Length C	Taper D	Hole Depth G	Face Diam. H
Class 1	Class 2	Class 3					
1712 1713 1715 1717 1718	3712 3713 3715 3717 3718	5712 5713 5715 5717 5717 5718	.482	1-1/4 1-1/2 2 2-1/2 2-3/4	4RW OR 1MT	3/4 1 <u>1-1/2</u> 2 2-1/4	3/16
1723 1725 1727 1729 17218	3723 3725 3727 3729 37218	5723 5725 5727 5729 57218	.625	1-1/2 2 2-1/2 3 4	5RW OR 2MT	3/4 1-1/4 1-3/4 2-1/4 3-1/4	1/4

30° OFFSET NOSE




CMW® 28 Part No.	CMW® 3 Part No.	Major Dia. A	Overall Length C	Taper D	Hole Depth G	Face Dia. H
Class 1	Class 2					
16-2491	16-2494	.482	2	4RW 1MT	1-1/2	1/4
	16-2495	.625	2-1/2	5RW 2MT	2	3/8
16-2493	16-2496	.875	3	7RW 3MT	2-1/4	1/2


ELKONITE® AND ELKON® FACED STRAIGHT MORSE TAPER ELECTRODES

ELKONITE® 10W3 Face	ELKON® 100M Face	ELKON® 190W Face	Major Dia. A	ELKON® OR ELKONITE® Lg. B	Over all Lg. Č	Taper D	Hole Depth G	Face Dia. H
ELKONIT	E® AND E	LKON® D	OME	NOSE				
611050	811050	911050	.482	3/16	2	4RW 1MT	1-1/2	1/8
612050	812050	912050	.625	1/4	2	5RW 2MT	1-1/2	1/8
ELKONIT	E® AND E	LKON® F	LAT I	NOSE				
631050	831050	931050	.482	3/16	2	4RW 1MT	1-1/2	.482
632030 632050 632070	832050	932050	.625	1/4	1-1/2 2 2-1/2		1 1-1/2 2	5/8
16-1353			.625	1/4	2-1/2		5/8	
633050	833050	933050	.875	1/4	2	7RW 3MT	1-1/2	7/8
•	ELKON®	CENTER	ED IN	SERT N	OSE			
	871050	971050	482	3/8	2	4RW 1MT	1-1/2	3/16

872050 972050

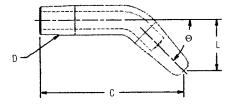
Electrodes faced with material other than those shown on this page are available to special order.

Elkonite® and Elkon® are registered trademarks owned by CMW.

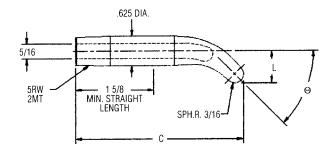
3/8

.625

5RW 2MT

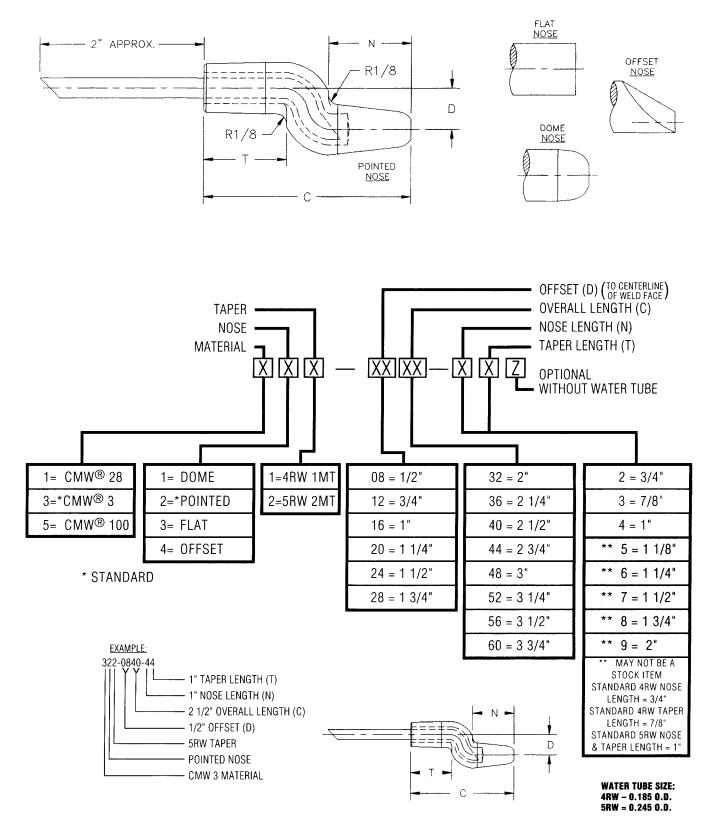

-1/2 1/4

2

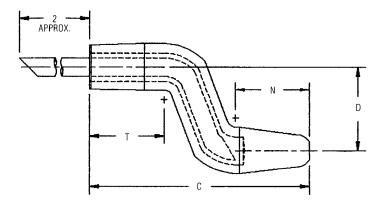

SINGLE BEND ELECTRODES

Part No.	Reference Length to £	Taper	Offset £ of Taper	Bent Angle
	of Face "C"	"D"	to £ of Face "L"	" O "
3214-04-15	1 11/16		1/4	
3219-04-15	2 15/16	4RW	1/4	
32118-13-15	3 7/8	1MT	13/16	15°
3225-04-15	1 7/8	- DW	1/4	
3229-04-15	2 7/8	5RW	1/4	
32218-10-15	3 13/16	2MT	5/8	
3215-07-30	1 7/8	4014	7/16	
3219-07-30	27/8	4RW	7/16	
32118-23-30	3 5/8	1MT	1 7/16	30°
3226-09-30	2 1/16	C DIM	9/16	
32212-09-30	3 1/16	5RW	9/16	
32220-24-30	3 13/16	2MT	<u> </u>	
3215-10-45	1 11/16	4014/	-, -	
32112-12-45	27/8	4RW	3/4	
32118-33-45	3 1/8	1MT	<u>2 1/16</u> 1 1/16	45°
3228-17-45 32214-17-45	2 1/16	5RW	1 1/16	
32220-33-45	3 1/16 3 13/16	2MT	2 1/16	
3218-23-60	2	2111	1 7/16	
32116-23-60	3	4RW	1 7/16	
32118-40-60	2 5/8	1MT	2 1/2	
32212-25-60	2 3/8		1 9/16	60°
32218-25-60	3 1/8	5RW	1 9/16	
32220-38-60	3	2MT	2 3/8	
32216-35-75	2 5/16		2 3/16	
32220-37-75	2 11/16	5RW	2 5/16	75°
32220-43-75	2 3/8	2MT	2 11/16	

SINGLE BEND

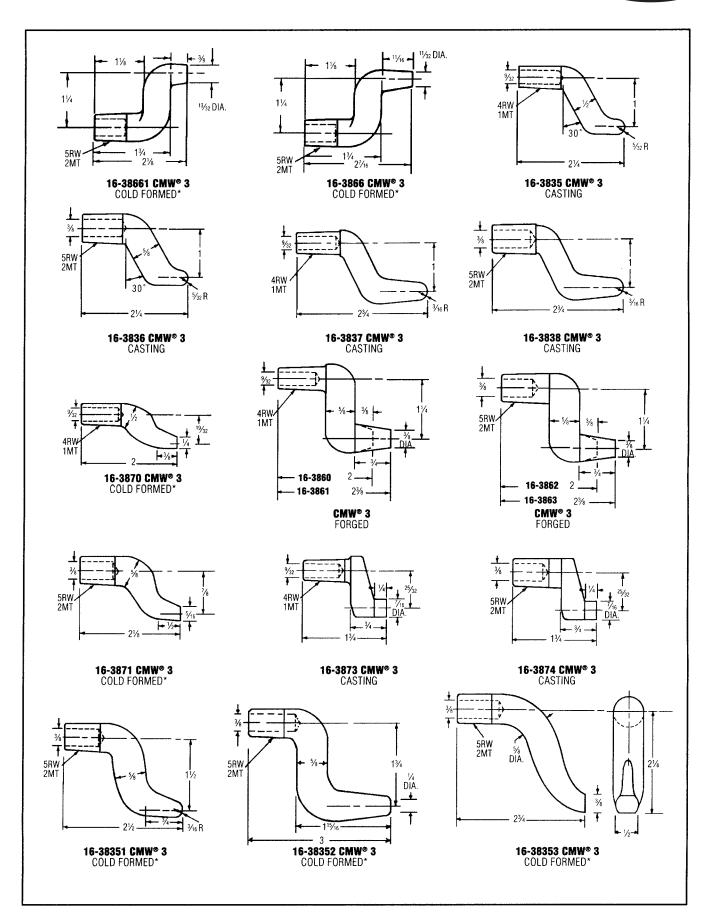


RADIUS BEND


Part No.	0.A.L. "C"	Offset £ of Taper to Top of Radius "L"	Bent Angle " O "
16-26015	3 11/16	3/8	15°
16-26030	3 5/8	33/64	30°
16-26045	3 1/2	43/64	45°
16-26060	3 3/8	27/32	60°
16-26075	3 5/32	1 1/32	75°
16-26090	2 13/16	1 1/4	90°

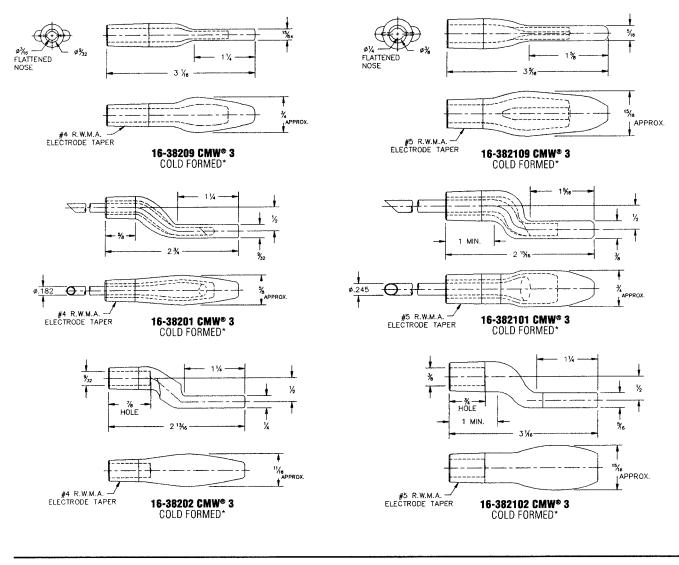
Radius bend electrodes are designed for use with 18-768 and 18-784 straight universal adapters shown on page 70.

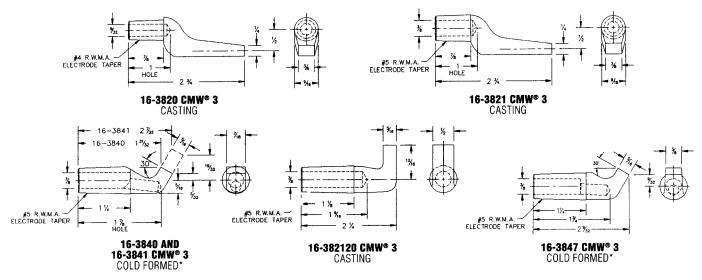
BENT DIMENSIONS REFERENCE ONLY



Offset "D"	Taper Size	Nose End "N"	Taper End "T"	Dome Pointed Flat O.A.L. "C"	Pointed Nose Part No.
1/0	4RW 1MT	3/4 3/4 2	7/8 7/8 7/8	2 2 1/2 3 1/4	321-0832-23 321-0840-23 321-0852-93
1/2	5RW 2MT	1 1 1 2	1 1 1	2 1/2 2 3/4 3 1/4 3 1/2	322-0840-44 322-0844-44 322-0852-44 322-0856-94
3/4	4RW 1MT	3/4 3/4 2	7/8 7/8 7/8	2 2 1/2 3 1/2	321-1232-23 321-1240-23 321-1256-93
5/4	5RW 2MT	1 1 2	1 1 1	2 3/4 3 3 1/2	322-1244-44 322-1248-44 <u>322-1256-94</u> 321-1636-23
	4RW 1MT	3/4 3/4 1 3/4 3/4	7/8 7/8 7/8 7/8	2 1/4 2 3/4 3 1/4 3 1/2	321-1636-23 321-1644-23 321-1652-83 321-1656-23
1	5RW 2MT	1 1 1 3/4	1 1 1	2 3/4 3 3 1/2 3 1/2	322-1644-44 322-1648-44 322-1656-44 322-1656-84
	4RW 1MT	3/4 3/4 1 1/2	7/8 7/8 7/8	2 1/2 3 3	321-2040-23 321-2048-23 321-2048-73
1 1/4	5RW 2MT	1 1 1 1/2 1 3/4	1 1 1 1	2 3/4 3 1/4 3 1/2 3 1/2 3 1/2	322-2044-44 322-2052-44 322-2056-44 322-2056-74 322-2056-74 322-2056-84
1 1/2	5RW 2MT	1 1 1/4	1	2 3/4 3	322-2444-44 322-2448-64
1 3/4	5RW 2MT	1 1 1/4	1 1	2 3/4 3	322-2844-44 322-2848-64

WATER TUBE SIZE: 4RW - 0.185 O.D. 5RW = 0.245 O.D.


CRANK ELECTRODES

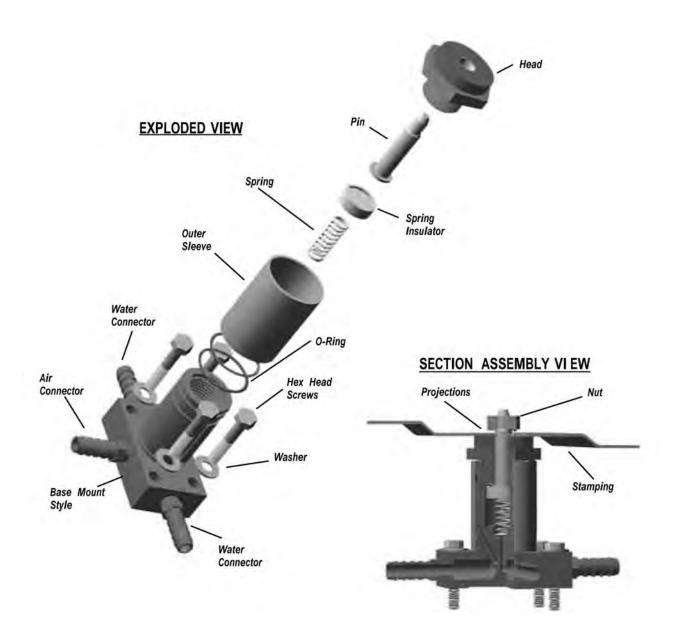

BENT DIMENSIONS REFERENCE ONLY

SPADE ELECTRODES

GUN ELECTRODES

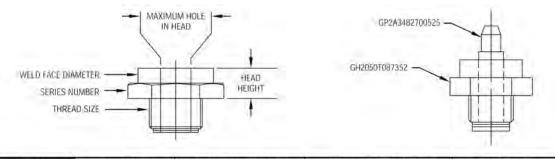
BENT DIMENSIONS REFERENCE ONLY

The high quality design and assembly provides a number of features and benefits including:

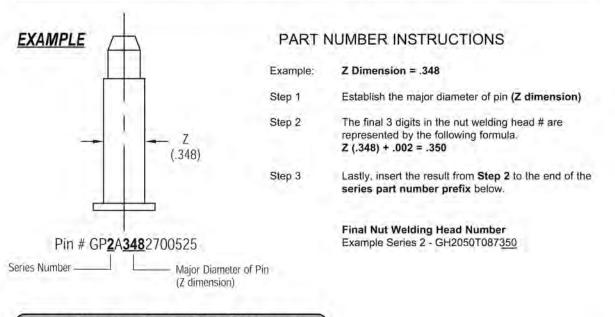

Accurate on center positioning of pilotless nuts provided automatically.

Insulated pin and sleeve prevents pin arcing in the threads.

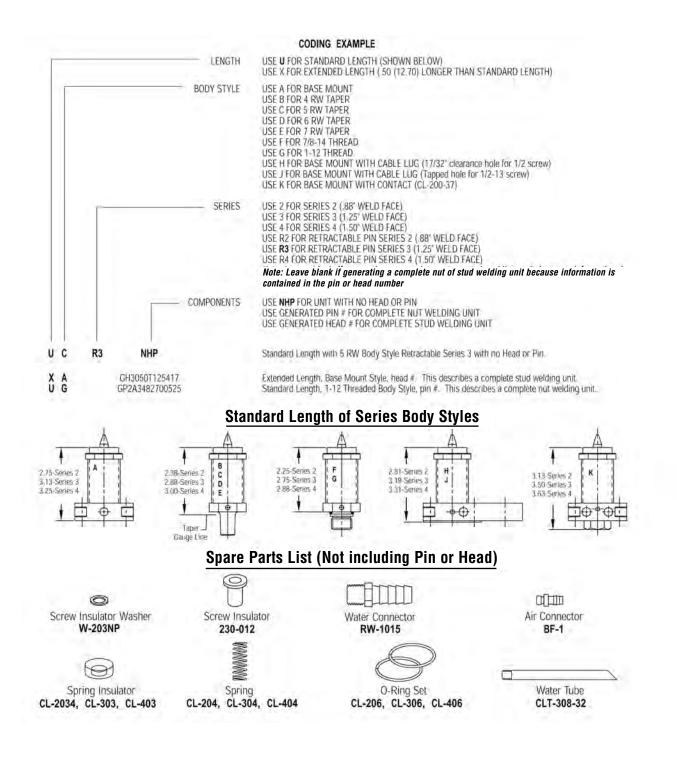
Unit converts from welding nuts to studs in seconds by removal of pilot pin and/or welding head. Used by automotive, mass transit, farm implement, stamping and appliance manufacturers.


Internal water cooling reduces heat build-up.

Minimum maintenance.

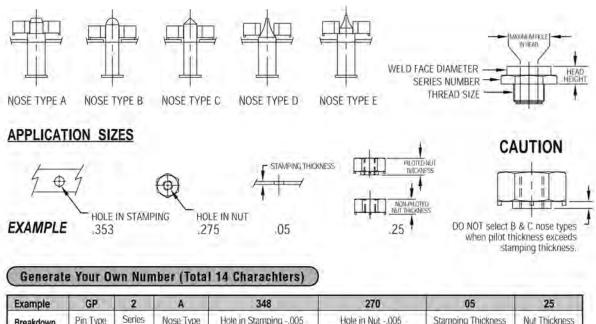


Nut Welding Heads


Series	Thread Size	Weld Face Diameter	Maximum Hole in Head*	Head Height
2	5/8-18	7/8 Standard	0.427 (10.85) ID	0.500
3	7/8-14	1-1/4 Standard	0.642 (16.31) ID	0.500
4	1-1/8-12	1-1/2 Standard	0.852 (21.64) ID	0.625

Generate Your Own Number (Total 13 Characters)

Series	Part Number Prefix	Z + .002" Specify to 3 decimal places.
2	GH2050T087	
3	GH3050T125	
4	GH4062T150	



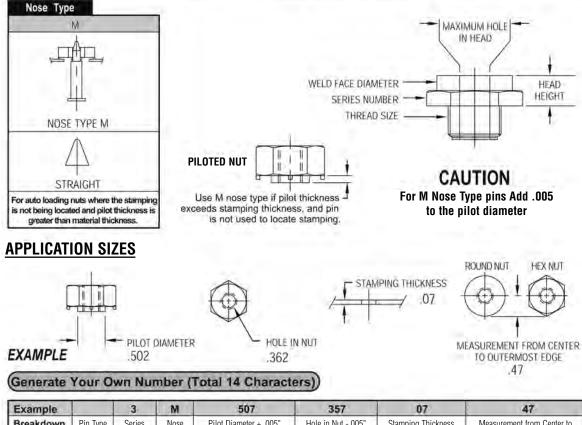
Manual Load Weld Nut Pins

Pin Type	Description
GP	Stainless Steel Pin, Supported by spring and/or air
CP	Coated, D2 Steel Pin, Supported by spring and/or air
RP	Retractable, Stainless Steel Pin, Movement controlled by Air Pressure only. Special Application please contact CenterLine
KP	Coated Retractable, D2 Steel Pin, Movement controlled by Air Pressure only. Special Application please contact CenterLine

Series	Thread Size	Weld Face Diameter	Maximum Hole in Head*	Head Height
2	5/8-18	7/8 Standard	0.427 (10.85) ID	0.500
3	7/8-14	1-1/4 Standard	0.642 (16.31) ID	0.500
4	1.1/8-12	1-1/2 Standard	0.852 (21.64) ID	0.625

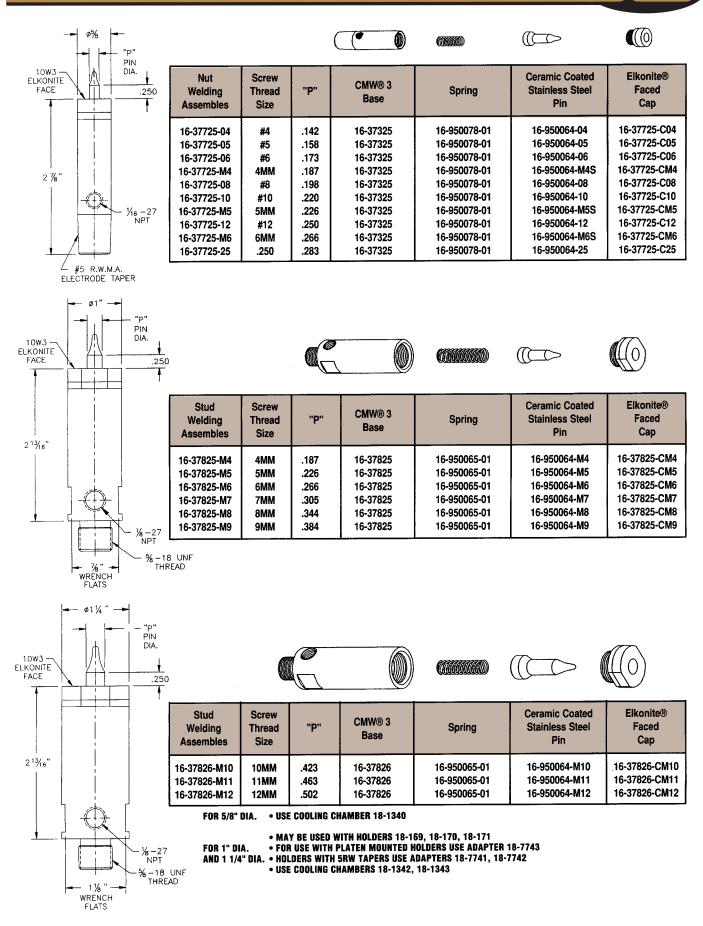
Nose Type	Description
А	Preferred when locating nut and stamping, no stamping contact during weld, no hole in upper electrode
В	Preferred when locating nut only, no stamping contact, no hole in upper electrode
C	Preferred when locating nut only, no stamping contact, no hole in upper electrode
D	Locates nut at a point on the pin nose. upper electrode requires clearance hole for pin tip
E	Preferred when locating nut and stamping, no hole in upper, good for hard to load applications

crample	GP	4	M	040	210	05	20
Breakdown	Pin Type	Series Number	Nose Type	Hole in Stamping005 (3 Dec.) - see note below	Hole in Nut005 (3 Dec.) - see note below	Stamping Thickness (2 Dec.)	Nut Thickness (2 Dec.)
	NC	TE: For B &	C style pins, the	Hole In Stamping value is the	Hole in Nut value (i.e GP2827)	02700525)	
Part Nu mber						· · · · · · · · · · · · · · · · · · ·	

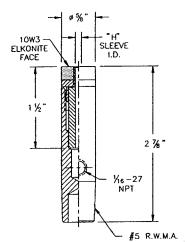


Gł	Туре	Description	1					
Gr				ported by spring and/or air				
CA	A	Coated, D2 S	Steel Pin, St	pported by spring and/or air				
RA	A	Retractable,	Stainless St	eel Pin, Movement controlled b	by Air Pressure only, Specia	Application please	contact CenterLine	
K/	A	Coated Retra	octable, D2 5	Steel Pin, Movement controlled	by Air Pressure only, Spec	al Application please	e contact CenterLine	
	eries	Thro	ad Size	Weld Face Diamet	er Maximum Ho	to in Hood*	Head Height	
			au 512e /8-18	7/8 Standard		A	0.500	
	2		/8-14	1-1/4 Standard	0.427 (10		0.500	
	4		1/8-12	1-1/4 Standard	0.642 (16		0.625	
-	4	-	2	nut electrodes are available t	0.852 (21 for larger IDs and areas			
	-	opi	what were a		ior larger nos ana areas i	in ordenance resu	ionona.	
Nose Type	9	_	,					
	N			P			IN HEAD	
	1			1	WELC	FACE DIAMETER		
	ATT		1.000	TAT		SERIES NUMBER	Inc.	
4						THREAD SIZE		
-						THREAD SIZE		
							at a feat of the second	
E	44			Щ			AUTION	
NOSE TYPE N NOSE TYPE P				CAUTION				
NOSE	E TYPE N			NOSE TYPE P			P Nose Types Only	
	办			Λ			and the second s	
/	$\langle \rangle$							
L				4		PILOTED I		
STF	RAIGHT			STRAIGHT				
Sector Contractions	the strength	here the	For a	TRANSPORT OF THE REAL PROPERTY.	imning	Caution: If pilot thickness exceeds stamping		
For auto loading nuts where the stamping is being located. For auto loading nuts where the stamping is not being located. Refer to caution note.				being located. Refer to cautio		thickness, please see special application sheet		
							Cat and	
						CONTRACTOR AND A REPORT OF		
stamping i	2					NON- PILOTED	NUT	
stamping i	ION S	IZES				NON- PILOTED	NUT	
stamping i	ION S	IZES				NON- PILOTED		
stamping i	ION S	IZES					╘╌╫╫╫╤┩	
stamping i	ION S	IZES				NON- PILOTED		
stamping i	ion s	IZES				THICKNESS	╘╌╫╫╫╤┩	
stamping i	ION S	IZES /					╘╌╫╫╫╤┩	
stamping i	ION S	1	AMPING			THICKNESS	╘╌╫╫╫╤┩	
stamping i	ION S	HOLE IN ST				THICKNESS	╘╌┼╫╫┝╖╬	
	ION S	HOLE IN ST				a Thickness ≠ .07		
Stamping i		HOLE IN ST ONLY FOR .502	N NOSE TY	.362		a Thickness ≠ .07	ROUND NUT HEX NUT	
Stamping i		HOLE IN ST ONLY FOR .502	N NOSE TY			a Thickness ≠ .07	╘╌╫╫╫╤┩	
Stamping i PPLICATI	Your	HOLE IN ST ONLY FOR .502 Dwn Nun	N NOSE TY	.362 Ital 14 Charachters		a Thickness ≠ .07	ROUND NUT HEX NUT ROUND NUT HEX NUT MEASUREMENT FROM CEN TO OUTERMOST EDGE .47	
Stamping i PPLICATI	Yourl	HOLE IN ST ONLY FOR .502 Dwn Nun	N NOSE TY Ther (To N	.362 Ital 14 Charachters 497	NUT	a Thickness ≓∕.07	ROUND NUT HEX NUT ROUND NUT HEX NUT MEASUREMENT FROM CEN TO OUTERMOST EDGE .47 47	
Stamping i PPLICATI	Your	HOLE IN ST ONLY FOR .502 Dwn Nun	N NOSE TY	.362 Ital 14 Charachters		a Thickness ≠ .07	ROUND NUT HEX NUT ROUND NUT HEX NUT MEASUREMENT FROM CEN TO OUTERMOST EDGE .47 Measurement from Cent	
Stamping i PPLICATI	Yourl	HOLE IN ST ONLY FOR .502 Dwn Nun 3 Series Number	N NOSE TY 1ber (To Nose Type	.362 Ital 14 Charachters 497 Hole in Stamping -,005	NUT Hole in Nut -005 (3 Dec.) - see note below	THICKNESS → .07 07 Stamping Thickne (2 Dec.)	ROUND NUT HEX NUT ROUND NUT HEX NUT MEASUREMENT FROM CEN TO OUTERMOST EDGE .47 Measurement from Center Outermost Edge (2 Dec	

Special Application Auto Load Weld Nut Pins


PinType	Description
GA	Stainless Steel Pin, Supported by spring and/or air
CA	Coated, D2 Steel Pin, Supported by spring and/or air
RA	Retractable, Stainless Steel Pin, Movement controlled by Air Pressure only, Special Application please contact CenterLine
KA	Coated Retractable, D2 Steel Pin, Movement controlled by Air Pressure only, Special Application please contact CenterLine

Series	Thread Size	Weld Face Diameter	Maximum Hole in Head*	Head Height	
2	5/8-18	7/8 Standard	0.427 (10.85) ID	0.500	
3	7/8-14	1-1/4 Standard	0.642 (16.31) ID	0.500	
4	1-1/8-12	1-1/2 Standard	0.852 (21.64) ID	0.625	


Example		3	M	507	357	07	47
Breakdown	Pin Type	Series Number	Nose Type	Pilot Diameter + .005" (3 Dec.)	Hole in Nut005" (3 Dec.)	Stamping Thickness (2 Dec.)	Measurement from Center to Outermost Edge (2 Dec.)
Part Number				-	· · · · · · · · · · · · · · · · · · ·		

CHAMELEON/MAX-LIFE[™] NUT WELDING ELECTRODES

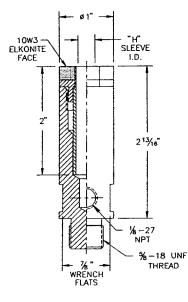
Elkonite® is a registered trademark owned by CMW.

CHAMELEON/MAX-LIFE[™] STUD WELDING ELECTRODES

Stud Welding Assembles	Screw Thread Size	"H"	CMW® 3 Base	Ceramic Coated Stainless Steel Sleeve	Elkonite® Faced Cap
16-37325-116	#4	.116	16-37325	16-953116	16-37325-C116
16-37325-132	#5	.132	16-37325	16-953132	16-37325-C132
16-37325-140	#6	.140	16-37325	16-953140	16-37325-C140
16-37325-169	#8	.169	16-37325	16-953169	16-37325-C169
16-37325-169	4MM	.169	16-37325	16-953169	16-37325-C169
16-373250191	#10	.191	16-37325	16-953191	16-37325-C191
16-37325-204	5MM	.204	16-37325	16-953204	16-37325-C204
16-37325-220	#12	.220	16-37325	16-953220	16-37325C220
16-37325-243	6MM	.243	16-37325	16-953243S	16-37325-C243
16-37325-254	.250	.254	16-37325	16-953254S	16-37325-C254

16-37525-320

16-37525-380


FOR 1" DIA.

8MM

.375

.320

.380

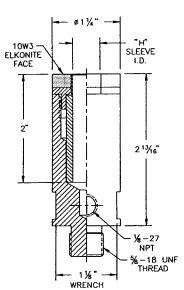
Stud Welding Assembles	Screw Thread Size	"Н"	CMW® 3 Base	Ceramic Coated Stainless Steel Sleeve	Elkonite® Faced Cap				
16-37525-243 16-37525-254 16-37525-320	6MM .250 .312	.243 .254 .320	16-37825 16-37825 16-37825	16-953243 16-953254 16-953320	16-37525-C243 16-37525-C254 16-37525-C320				

16-37825

16-37825

16-953320 16-953380 16-37525-C320

16-37525-C380

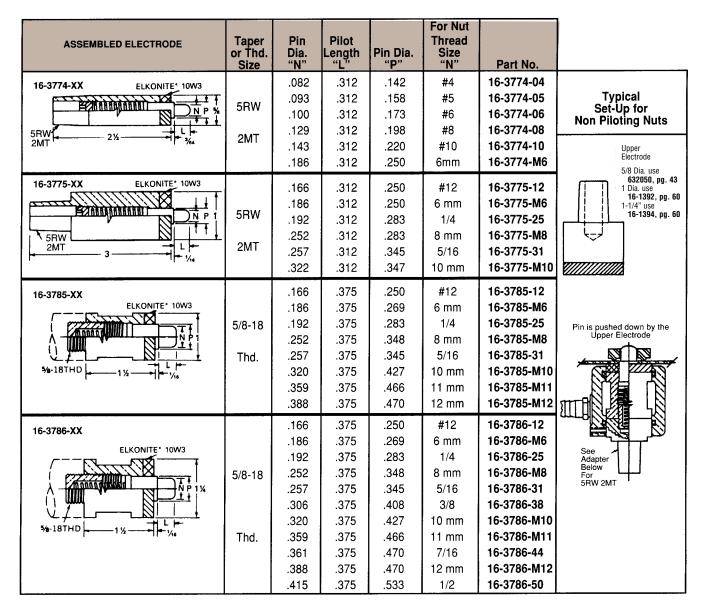

Stud Welding Assembles	Screw Thread Size	"H"	CMW® 3 Base	Ceramic Coated Stainless Steel Sleeve	Elkonite® Faced Cap
16-37526-399	10MM	.399	16-37526	16-953399	16-37526-C399
16-37526-444	.438	.444	16-37526	16-953444	16-37526-C444
16-37526-477	12MM	.477	16-37526	16-953477	16-37526-C477
16-37526-502	.500	.502	16-37526	16-953502	16-37526-C502
16-37526-630	.625	.630	16-37526	16-953630	16-37526-C630

• USE COOLING CHAMBER 18-1340 FOR 5/8" DIA.

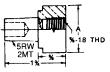
• MAY BE USED WITH HOLDERS 18-169, 18-170, 18-171, PAGE 64 • FOR USE WITH PLATEN MOUNTED HOLDERS USE ADAPTER 18-7743, PAGE 62

AND 1 1/4" DIA. • HOLDERS WITH 5RW TAPERS USED ADAPTERS 18-7741, 18-7742, PAGE 58

• USE COOLING CHAMBERS 18-1342, 18-1343, PAGE 59

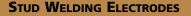

FLATS

Elkonite® is a registered trademark owned by CMW.


SELF-PILOTING NUT WELDING ELECTRODES

ASSEMBLED ELECTRODE	Taper Size D	Pilot Pin Dia. "N"	For Nut Thread Size "N"	Pilot Pin Length "L"	Part No.	
16-3764-XX		.082	#4	.093	16-3764-04	
5RW		.093	#5	.093	16-3764-05	Typical Set-Up for Self Piloting Nuts
ELKONITE® 10W3		.100	#6	.093	16-3764-06	
		.107	3.5 mm	.093	16-3764-M3-5	
5RW 22 L2MT		.123	4.0 mm	.156	16-3764-M4	
2MT 2 2W)		.129	#8	.156	16-3764-08	
		.143	#10	.156	16-3764-10	
		.156	5.0 mm	.156	16-3764-M5	Upper
						Electrode 5/8 Dia. use 632050, pg. 43 1 Dia. 16-1392, pg. 60
16-3765-XX		.166	#12	.375	16-3765-12	1-1/4" use 16-1394, pg. 60
ELKONITE® 10W3	5RW	.189	6.0 mm	.375	16-3765-M6	
	51144	.192	1/4	.375	16-3765-25	
		.223	7.0 mm	.375	16-3765-M7	ALLER
5RW 2MT2L	2MT	.252	8.0 mm	.375	16-3765-M8	
		.257	5/16	.375	16-3765-31	
		.291	9.0 mm	.375	16-3765-M9	
		· · · · · · · · · · · · · · · · · · ·	I			
16-3766-XX		.306	3/8	.375	16-3766-38	
ELKONITE® 10W3		.320	10 mm	.375	16-3766-M10	
	5RW	.359	11 mm	.375	16-3766-M11	
		.361	7/16	.375	16-3766-44	
5RW.		.388	12 mm	.375	16-3766-M12	
2MT22	2MT	.415	1/2	.375	16-3766-50	
		.455	14 mm	.375	16-3766-M14	

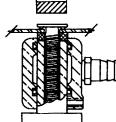
SCS



Use with 5%-18 Thread assemblies to convert to 5RW or 2MT Taper Shank

A	Part No.	Use With
1	18-7741	16-3785-XX
1 1/4	18-7742	16-3786-XX

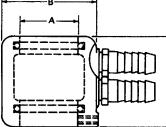
Note: Electrode Assemblies 18-3785-XX and 18-3786-XX May also be used with 5/8-18 Thread Holders 18-169, 18-170 and 18-171 as shown on page 64.



	*Screw	Insu	lation				
ASSEMBLED ELECTRODE	Thread Size	I.D. H.		Р	art No. Asser	nbled Electrode	3
See page 35 for Metric conversions See page 36 for Taper dimensions	#4 #5	.116 .132	Depth B	.375 16-3724-1161 16-3724-1321	16-37	750 24-1162 24-1322	1.125 16-3724-1163 16-3724-1323
	#6 #8	.140 .150 .157 .169	Depth B	.500 16-3724-1401 16-3724-1501 16-3724-1571 16-3724-1691	16-37 16-37 16-37	.00 24-1402 24-1502 24-1572 24-1692	1.500 16-3724-1403 16-3724-1503 16-3724-1573 16-3724-1693
16-3724-XXXX	#10 #12 .250	.191 .220 .254	Depth B	.750 16-3724-191 16-3724-220 16-3724-254	1	1 16-3724-2202	
	.250	.254	Depth B	.750 16-3725-254	1	1	1.500 6-3725-2542
5RW 2MT 	.312 .375	.277 .317 .339 .365 .380	Depth B	1.00 16-3725-277 16-3725-317 16-3725-339 16-3725-380 16-3725-380	71)1)1	1	2.00 6-3725-2772 6-3725-3172 6-3725-3392 6-3725-3652 6-3725-3802
ELKONITE® 10W3	 .437 .500	.401 .427 .444 .502	Depth B	1.00 16-3726-401 16-3726-427 16-3726-444 16-3726-502	'1 1	1	2.00 6-3726-4012 6-3726-4272 6-3726-4442 6-3726-5022
2MT B	.625	.552 .630 .676 .801	Depth B	1.00 16-3726-552 16-3726-630 16-3726-676 16-3726-801)1 51	1	2.00 6-3726-5522 6-3726-6302 6-3726-6762 6-3726-8012

For upper electrode use standard electrode:

⁵/8 Dia. **632050** page 43 1 Dia. **16-1392** page 60 1-¹/4 Dia. **16-1394** page 60



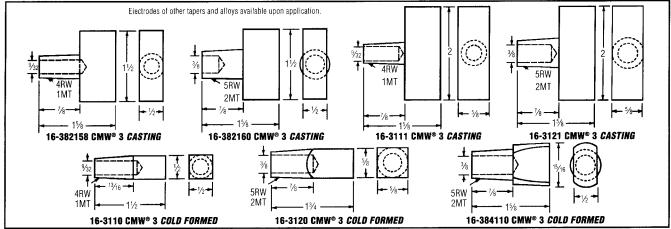
CMW External Water Cooling Chambers are designed to provide supplementary cooling in special, hard-to-cool applications. These cast aluminum jackets are securely sealed and locked in position over the external surface of $\frac{5}{8}$ ", $\frac{7}{8}$ ", 1", or $\frac{11}{4}$ " diameter electrodes. Standard water nipples connect to the regular water inlet and outlet hoses of these external cooling chambers.

CMW External Water Cooling Chambers are also recommended for *additional* cooling capacity on internally cooled applications operating at elevated temperatures.

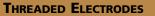
One Piece Aluminum Castings—Rubber "O" Ring Seals—Standard Water Nipples—Allen Head Set-Screw Lock-On.

EXTERNAL ELECTRODE COOLING CHAMBERS

m	PART NO.	To Fit A Dia. Electrode	0.D. B	Overall Length C
	18-1340	5/8	1¼	1½
	18-1341	7/8	1½	1½
	18-1342	1	1 ³ ⁄4	1½
	18-1343	1¼	2	1%


SWIVEL HEAD BACK-UP ELECTRODES

WRENCH FLATS Thru Thru Thru Thru Thru	IT 3/8	7/8
	- 0.00	
F H		1
D water 16-2300 4RW 1N HOLE 11% "O" Ring 16-2301 5RW 2M		1-1/4
• 21/64	T 3/8	1-1/2
WRENCH FLATS 16-2314 4RW 1M 16-2315 5RW 2M		7/8
F Image: Blind 16-2312 4RW 1M F Image: Blind 16-2312 4RW 1M Image: Blind 16-2313 5RW 2M		1
Hole 16-2310 4RW 1M Hole 11/2 - Hole 16-2311 5RW 2M		1-1/4
▶ 2 ⁷ / ₆₄ → 16-2316 5RW 2M	T 3/8	1-1/2
WRENCH FLATS FLATS Blind Hole 16-23129 16-23139 5RW 2M		1
F Image: With Spring 16-23109 4RW 1M With Spring 16-23119 5RW 2M		1-1/4
and Ball 16-23169 HOLE 21/64 11/2 11/2 11/2 16-23179 5 RW 2M		1-1/2


LARGE DIAMETER FLAT FACED BACK-UP ELECTRODES

		Overall			Hole	Weld Face	Shank
Part No.	Weld Face Material	Length C	Taper D	Dia. F	Depth G	Dia. H	Length T
16-3012	CMW® 3		4RW			3/4	
16-3010 16-3030	CMW® 3 CMW® 3	1-1/4	or 1MT	9/32	7/8	1 1-1/4	5/8
16-3021	CMW® 3		5RW			7/8	
16-3020 16-3040	CMW® 3 CMW® 3	1-1/2	or 2MT	3/8	1-1/8	1 1-1/4	7/8
16-3050	CMW [®] 3					1-1/2	
16-1392 16-1393	ELKONITE® 10W3 ELKONITE® 10W3	2 3	5RW	3/8	1-1/2 5/8	1 1	7/8
16-1394 16-1395	ELKONITE® 10W3 ELKONITE® 10W3	2 3-1/4	or 2MT	3/0	1-1/2 5/8	1-1/4 1-1/4	770

SQUARE AND RECTANGULAR FACED BACK-UP ELECTRODES

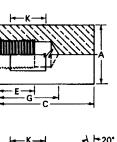
Elkonite[®] is a registered trademark owned by CMW.

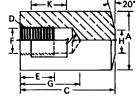
CMW®3 Female Threaded Electrodes

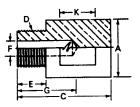
CMW [®] 3 Part No.	C Overall Length	D Thread	A Major Dia.	E Thread Depth	G Water Hole Depth	F Water Hole Dia.	Over Wrench Flats	K Wrench Flat Length	H Welding Face Dia.	FLAT
336508 336510 336512	2	⁵∕≋-18	1 1¼ 1½	3⁄4	1¼	³⁷ ⁄64	⁷ ⁄8 1 1 ¹ ⁄4	³ /4 3/4 7/8	1 1¼ 1½	
326508 326510 326512	2	⁵⁄a-18	1 1¼ 1½	3⁄4	1¼	³⁷ ⁄64	⁷ /8 1 1 ¹ /4	3/4 3/4 7/8	3/8 1/2 5/8	TRUNCATED

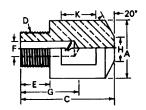
CMW®3 Male Threaded Electrodes

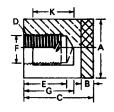
CMW® 3 Part No.	C Overall Length	D Thread	A Major Dia.	E Thread Depth	G Water Hole Depth	F Water Hole Dia.	Over Wrench Flats	K Wrench Flat Length	H Welding Face Dia.	FI AT
330507 330508 335506 335507	2	5⁄8-18 5∕8-18 5∕8-11 5∕8-11	⁷ /8 1 ³ /4 ⁷ /8	⁹ ⁄16 ⁹ ⁄16 ¹⁵ ⁄32 ¹⁵ ⁄32	1¼	5⁄16 5⁄16 5⁄16 5⁄16	3/4 7/8 5/8 3/4	5/8 5/8 5/8 3/4	7/8 1 3/4 7/8	FLAT
335508 335510 335512		³ ⁄4-10 ³ ⁄4-10 ⁷ ⁄8-9	1 1¼ 1½	5/8 5/8 3/4		³ /8 ³ /8 1/2	⁷ ⁄8 1 1 ¹ ⁄4	⁷ /8 3⁄4 7⁄8	1 1¼ 1½	
325506 325507 325508 325510	2	5∕8-11 5∕8-11 3∕4-10 3∕4-10	³ ⁄4 ⁷ ⁄8 1 11⁄4	¹⁵ /32 ¹⁵ /32 5/8 5/8	1¼	5⁄16 5⁄16 3⁄8 3⁄8	5⁄8 3⁄4 7⁄8 1	1/2 5/8 5/8 3/4	1/4 5/16 3/8 1/2	TRUNCATED

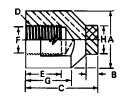

ELKONITE® Faced Female Threaded Electrodes


ELKONITE® 10W3 Part No.	C Overall Length	D Thread	A Major Dia.	E Thread Depth	G Water Hole Depth	F Water Hole Dia.	Over Wrench Flats	K Wrench Flat Length	H Welding Face Dia.	B ELKONITE Thickness	FLAT
636308 636310 636312	1½	5∕8-18	1 1¼ 1½	3⁄4	1	³⁷ ⁄64	⁷ ⁄8 1 1 ¹ ⁄4	1/2 1/2 3/4	1 1¼ 1½	1⁄4	
626308 626310	1½	5∕8-18	1 11⁄4	3/4	1	37/64	⁷ ⁄8 1	1/2 1/2	5⁄8 5⁄8	1⁄4	CENTERED


ELKONITE® Faced Male Threaded Electrodes

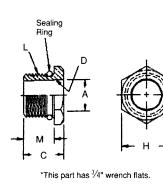

ELKONITE® 10W3 Part No.	C Overall Length	D Thread	A Major Dia.	E Thread Depth	G Water Hole Depth	F Water Hole Dia.	Over Wrench Flats	H Welding Face Dia.	B ELKONITE Thickness	
620307	1½	5⁄8-18	⁷ /8	⁹ ⁄16	1	5⁄16	3/4	1/2	1/4	CE
625206	1¼	5⁄8-11	³ /4	¹⁵ ⁄32	7⁄8	5⁄16	5/8	1/2	3/16	
625308	1%	3⁄4-10	1	⁵ ⁄8	1³⁄16	3⁄8	7/8	5/8	1/4	


ENTERED





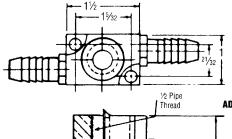
*Bodies for ELKONITE® Faced Electrodes are Class II Material

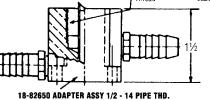


L		ADAPTER	MAI	.e taper		FEMALE TAP	ER	Length	Hex.	
	\wedge	PART NO.	Size L	Minor Dia. J	Dia. @ ½" K	Size D	Major Dia. A	Under Head M	Over Flats H	Overall Length C
	$\{ \cap \}$	18-741	5RW or 2MT	.588	.613	4RW or 1MT	.463	7⁄8	7⁄8	1 ³⁄16
		18-742	7RW or 3MT	.819	.844	5RW or 2MT	.625	1 ³⁄16	1	11/2
	$ \Psi $	18-7414	6RW	.706	.731	5RW	.625	7⁄8	1	1 ³⁄16
M -+ C+	┝╾н⊸┥	18-7415	4RW or 1MT	.438	.463	5RW or 2MT	.625	⁵ ⁄8	7⁄8	13⁄4
		18-7416	5RW or 2MT	.588	.613	6RW	.750	7⁄8	1	21⁄4

MALE PIPE THREAD TO FEMALE TAPER ADAPTERS

L, D		ADAPTER	MALE	FEMALE TAP		Length	Hex.	0
		PART NO.	THREAD Size L	Size D	Major Dia. A	Under Head M	Over Flats H	Overall Length C
		18-746-07 18-747-07 18-7465-07	½-14 pipe ½-14 pipe ½-14 pipe	4RW or 1MT 5RW or 2MT 5RW MALE CAP	.463 .625 .414	5⁄8 5⁄8 9⁄16	1 1 ″⁄8	7/8 7/8 7/8
е м <mark>е</mark>	₩	18-748-06 18-749-06	5⁄8-14 pipe 5⁄8-14 pipe	4RW or 1MT 5RW or 2MT	.463 .625	^{9∕} 16 ^{9∕} 16	1	3/4 3/4
C *	*Adapters of longer lengths available in 1/8" increments upon request	18-756-09 18-757-09 18-7576-09	³ /4-14 pipe 3/4-14 pipe 3/4-14 pipe	4RW or 1MT 5RW or 2MT 6RW	.463 .625 .750	7/8 7/8 7/8	1½ 1¼ 1¼	1½ 1½ 1½

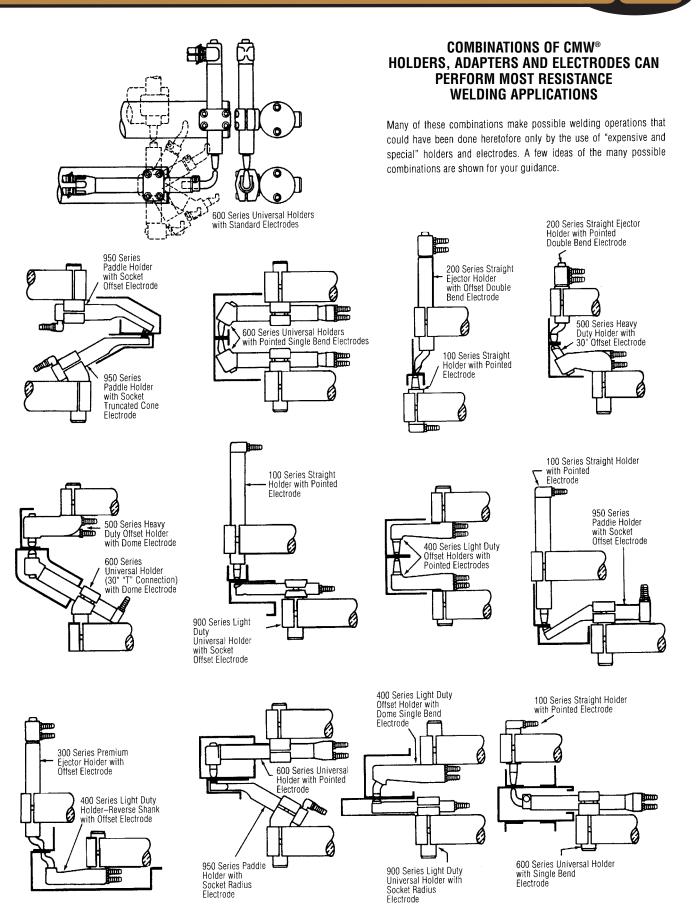

MALE THREAD TO FEMALE TAPER ADAPTERS

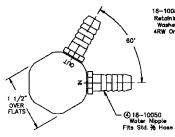


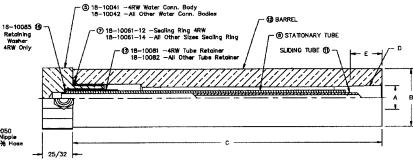
ADAPTER	MALE	FEMALE TAP		Length	Dia.		Sealing
PART NO.	THREAD Size L	Size D	Major Dia. A	Under Head M	Or Hex H	Overall Length C	Ring Part No.
18-750	⁵⁄8-18	4RW or 1MT	.463	%16	⁷ ⁄8 Hex	¹³ /16	18-10060-11
18-751	⁵⁄8-18	5RW or 2MT	.625	%16	1 Hex	1 ¹¹ /16	18-10060-11
*18-755	³⁄4-10	5RW or 2MT	.625	%16	1 Dia.	1%16	18-10060-12
18-770	7⁄8-14	4RW or 1MT	.463	5/8	1 Hex	¹³ ⁄16	18-76460
18-771	7∕8-14	5RW or 2MT	.625	5/8	1 Hex	¹³ ⁄16	18-76460
18-7743	1-14	5/8 - 18 THD	–	5/8	1¼ Hex	1	18-10060-17
18-785	1-14	4RW or 1MT	.463	9⁄16	11⁄4 Hex	¹³ ⁄16	18-10060-17
18-786	1-14	5RW or 2MT	.625	9⁄16	11⁄4 Hex	¹³ ⁄16	18-10060-17
18-7863	1-14	6RW	.750	3⁄4	11⁄4 Hex	1 ³ ⁄4	18-10060-17
18-787	1-14	7RW or 3 MT	.875	3⁄4	1¼ Hex	21/8	18-10060-17
18-7875	1-14	5RW or 2MT	.625	9⁄16	1¼ Dia.	11/16	18-10060-17
18-7876	1-14	6RW	.750	5⁄8	1¼ Dia.	7/8	18-10060-17

FEMALE THREAD TO FEMALE TAPER ADAPTERS

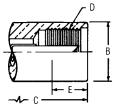
⊨ C+		ADAPTER	FEMALE	FEMAL	E TAPER		Over	
	+	PART NO.	THREAD Size L	Size D	Major Dia. A	Outside Dia. B	Wrench FLats H	Overall Length C
		18-753 18-754	⁵⁄8-18 ⁵⁄8-18	4RW or 1MT 5RW or 2MT	.475 .625	1¼ 1¼	3⁄4 3⁄4	15⁄8 15⁄8
[]	B -	18-7591 18-7592	³ ⁄4-10 ³⁄4-10	4RW or 1MT 5RW or 2MT	.463 .625	11⁄4 Hex 11⁄4 Hex	1¼ 1¼	13⁄4 13⁄4

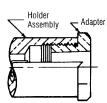





-1¼ -

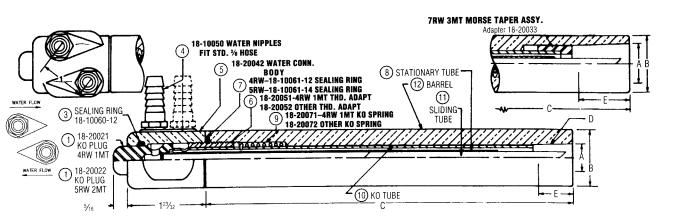
ADAPTER PART NO. 18-752


100 SERIES (NON-EJECTOR) WATER COOLED ELECTRODE HOLDERS



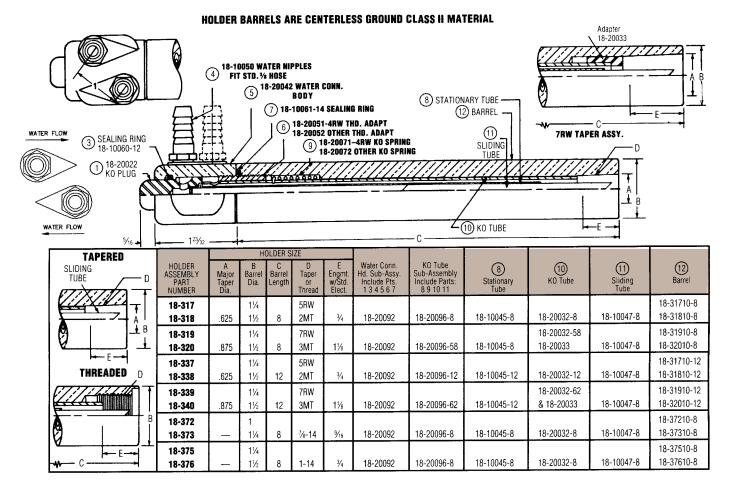
TAF	PERED
(7.7.7.7.	

THREADED

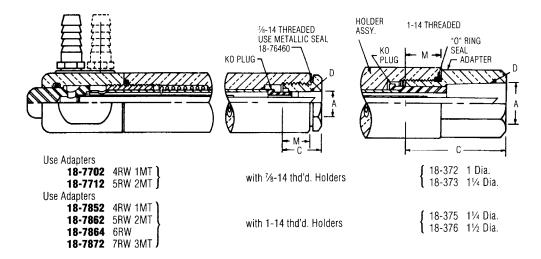

ADAPTERS FOR USE WITH THREADED

		ł	OLDER SI	ZE		Water Connection			
HOLDER ASSEMBLY PART NUMBER	A Major Taper Dia.	B Barrel Dia.	C Barrel Length	D Taper Or Thread	E Engage- ment with Std. Electrode	Head Sub-Assembly Include Parts: 4 5 7 8 15 17	8 Stationary Tube	(1) Sliding Tube	(12) Barrel
18-101 18-102 18-103 18-104	.463	³ ⁄4 ⁷ ⁄8 1 1 ¹ ⁄4	3	4RW 1MT	1/2	18-10091-3	18-10044-3	18-10046-3	18-11110-3 18-11210-3 18-11310-3 18-11410-3
18-106 18-107 18-108	.625	1 11/4 11/2	3	5RW 2MT	3⁄4	18-10092-3	18-10045-3	18-10047-3	18-11610-3 18-11710-3 18-11810-3
18-111 18-112 18-113 18-114	.463	³ ⁄4 7⁄8 1 11⁄4	8	4RW 1MT	1/2	18-10091-8	18-10044-8	18-10046-8	18-11110-8 18-11210-8 18-11310-8 18-11410-8
18-116 18-117 18-118	.625	1 1¼ 1½	8	5RW 2MT	3⁄4	18-10092-8	18-10045-8	18-10047-8	18-11610-8 18-11710-8 18-11810-8
18-119 18-120	.875	1¼ 1½	8	7RW 3MT	11/8	18-10092-8	18-10045-8	18-10047-8	18-11910-8 18-12010-8
18-131 18-132 18-133 18-134	.463	³ ⁄4 7⁄8 1 11⁄4	12	4RW 1MT	1⁄2	18-10091-12	18-10044-12	18-10046-8	18-1110-12 18-11210-12 18-11310-12 18-11410-12
18-136 18-137 18-138	.625	1 1¼ 1½	12	5RW 2MT	3⁄4	18-10092-12	18-10045-12	18-10047-8	18-11610-12 18-11710-12 18-11810-12
18-169 18-170 18-171	—	1 1¼ 1½	8	⁵ ⁄8-18	9⁄16	18-10092-8	18-10045-8	18-10047-8	18-16910-8 18-17010-8 18-17110-8
18-172 18-173 18-174	—	1 1¼ 1½	8	%-14	⁹ ⁄16	18-10092-8	18-10045-8	18-10047-8	18-17210-8 18-17310-8 18-17410-8
18-175 18-176	_	1¼ 1½	8	1-14	3⁄4	18-10092-8	18-10045-8	18-10047-8	18-17510-8 18-17610-8

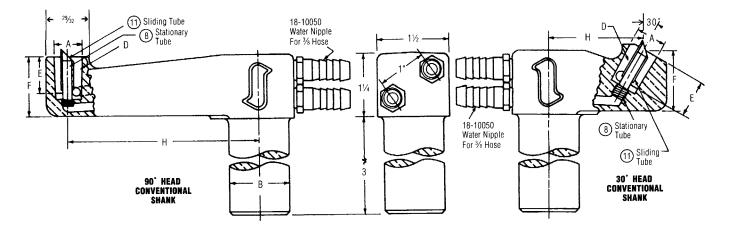
Holder Assembly No.		Adapter Part No.	Attachment Description		Adapter Part No.		Attachment Description
18-16 9 18-170 18-171	Use With	18-750 18-751 18-752 18-811	4RW 1MT Female 5RW 2MT Female 5%-18 M. Thd. #1 Size "Nu-Twist"®	-	18-753 18-754		4RW 1MT Female 5RW 2MT Female
18-172 18-173 18-174	Use With	18-770 18-771	4RW 1MT Female 5RW 2MT Female	May also be used with universal Adapters having 7/8-14 Male thread, See page 70.			
18-175 18-176	Use With	18-785 18-786 18-7863 18-787 18-812	4RW 1MT Female 5RW 2MT Female 6RW Female 7RW 3MT Female #2 Size "Nu-Twist"®		May also be used with universal Adapters having 1-14 Male thread, See page 70.		


200 SERIES (EJECTOR) WATER COOLED ELECTRODE HOLDERS

			H	OLDER S	IZE							
	HOLDER ASSEMBLY PART NUMBER	A Major Taper Dia.	B Barrel Dia.	C Barrel Length	D Taper Or Thread	E Engmt. with/Std. Elect.	Water Conn. Hd. Sub-Assy. Include Parts: 1 3 4 5 6 7	KO Tube Sub-Assembly Include Parts: 8 9 10 11	8 Stationary Tube	(10) KO Tube	(11) Sliding Tube	(12) Barrel
TAPERED SLIDING	18-201 18-202 18-203 18-204	.463	³ /4 ⁷ /8 1 11/4	3	4RW 1MT	1/2	18-20091	18-20095-3	18-10044-3	18-20031-3	18-10046-3	18-11110-3 18-11210-3 18-11310-3 18-11410-3
	18-206 18-207 18-208	.625	1 1¼ 1½	3	5RW 2MT	3⁄4	18-20092	18-20096-3	18-10045-3	18-20032-3	18-10047-3	18-11610-3 18-11710-3 18-11810-3
	18-211 18-212 18-213 18-214	.463	³ /4 ⁷ /8 1 1 ¹ /4	8	4RW 1MT	½	18-20091	18-20095-8	18-10044-8	18-20031-8	18-10046-8	18-11110-8 18-11210-8 18-11310-8 18-11410-8
	18-216 18-217 18-218	.625	1 1¼ 1½	8	5RW 2MT	3⁄4	18-20092	18-20096-8	18-10045-8	18-20032-8	18-10047-8	18-11610-8 18-11710-8 18-11810-8
	18-219 18-220	.875	1¼ 1½	8	7RW 3MT	11/8	18-20092	18-20096-58	18-10045-8	18-20032-58 & 18-20033	18-10047-8	18-11910-8 18-12010-8
	18-231 18-232 18-233 18-234	.463	³ /4 ⁷ /8 1 11/4	12	4RW 1MT	1/2	18-20091	18-20095-12	18-10044-12	18-20031-12	18-10046-8	18-11110-12 18-11210-12 18-11310-12 18-11410-12
	18-236 18-237 18-238	.625	1 1¼ 1½	12	5RW 2MT	3⁄4	18-20092	18-20096-12	18-10045-12	18-20032-12	18-10047-8	18-11610-12 18-11710-12 18-11810-12
	18-236-18 18-237-18 18-238-18	.625	1 1¼ 1½	18	5RW 2MT	3⁄4	18-20092	18-20096-18	18-10045-12	18-20032-18	18-10047-29	18-11610-18 18-11710-18 18-11810-18
B B	18-272 18-273 18-274	_	1 1¼ 1½	8	⅔-14	⁹ ⁄16	18-20092	18-20096-8	18-10045-8	18-20032-8	18-10047-8	18-17210-8 18-17310-8 18-17410-8
	18-275 18-276		1¼ 1½	8	1-14	3/4	18-20092	18-20096-8	18-10045-8	18-20032-8	18-10047-8	18-17510-8 18-17610-8


EJECTOR TYPE ADAPTERS 7/8-14 THREAD

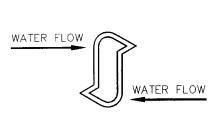
7%-14 THREADED USE METALLIC SEAL KO 18-76460	ADAPTER PART NO.	MALE THREAD Size L	FEMALE TA Size D	PER Major Diameter A	Length Under Head M	Hex Over Flats H	Overall Length C	Sealing Ring Part No.	KO Plug Part No.
	18-7702 18-7712	%-14 %-14	4RW 1MT 5RW 2MT	.463 .625	5/8 1/2	1 1	13/16 1-1/16	18-76460 18-76460	18-78501 18-7712-3
		Hold	With Threaded Ejecto lers to make Replacea r Holders			Part No. 18-272 18-273 18-274	%-14 Fe %-14 Fe	on Threaded Holder em. Thd. 1 Dia. em. Thd. 1¼ Dia. em. Thd. 1½ Dia.	
1-14 THREADED				EJECTOR T	YPE ADAPTE	RS 1-14 TH	READ		
KO PLUG – M – M – M – M – M – M – M – M – M –	18-7852 18-7862	1-14 1-14	4RW 1MT 5RW 2MT	.463 .625	9/16 7/16	1-1/4 1-1/4	13/16 1-1/16	18-10060-17 18-10060-17	18-78501 18-7712-3
	18-7864 18-7872	1-14 1-14	6RW 7RW 3MT	.750 .875	3/4 3/4	1-1/4 1-1/4	1-3/4 2-1/8	18-10060-17 18-10060-17	18-78650 18-78701
HOLDER ASSY		Hold	With Threaded Ejecto lers to make Replacea er Holders			Part No. 18-275 18-276	1-14 Fe	on Threaded Holder em. Thd. 1¼ Dia. em. Thd. 1½ Dia.	

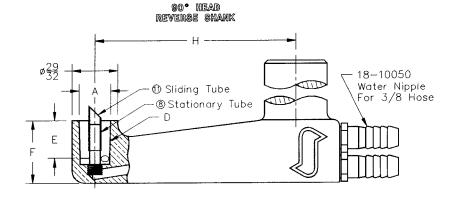

CMW PREMIUM HOLDER FEATURES

The Premium Electrode Holder Barrels are made from high strength Class II material, centerless ground to within .002" tolerance on diameter and Nickel Plated to resist wear and assure uniform contact resistance of a low magnitude. These factors, in addition to the sturdy construction of the ejector mechanisms, plus the ample, well constructed water cooling passage, make these holders ideally suited for use with low frequency, direct current welders, and conventional alternating current machines using high weld currents.

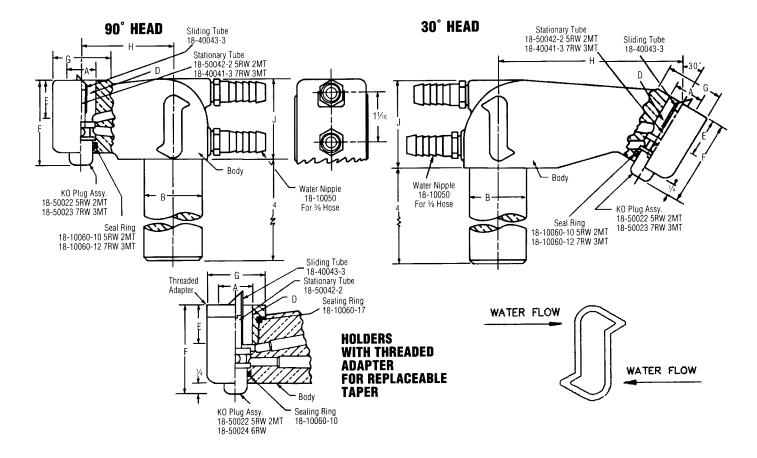
66

400 SERIES OFFSET (NON-EJECTOR) WATER COOLED ELECTRODE HOLDERS

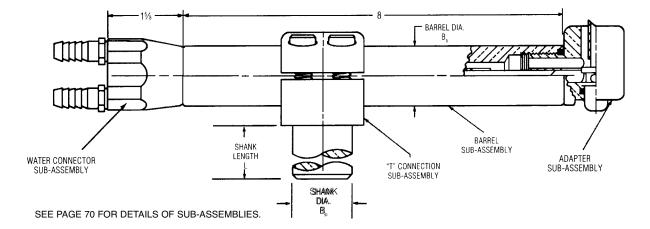



CONVENTIONAL SHANK

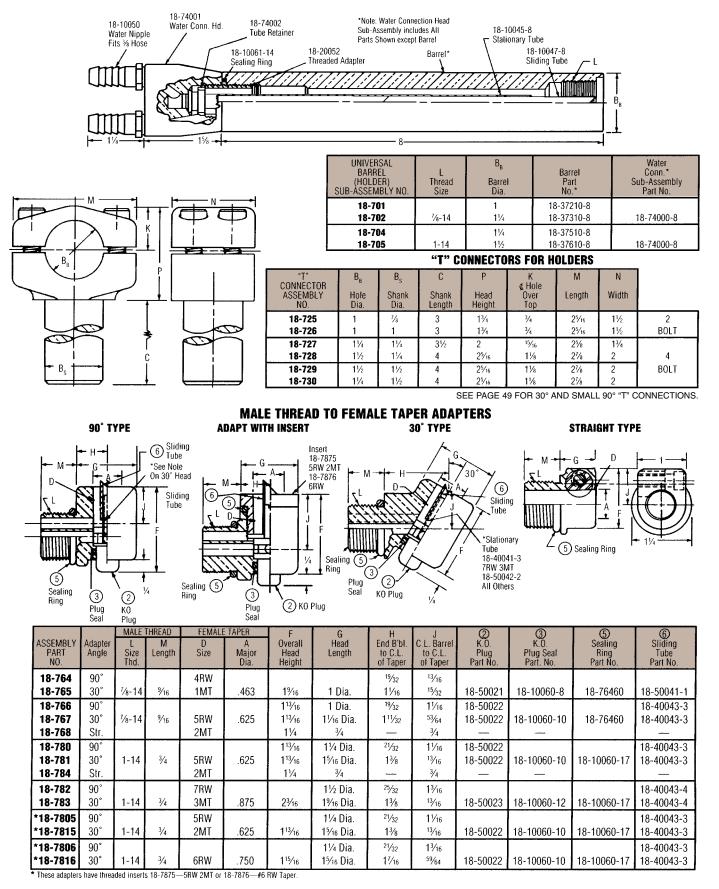
HOLDER SIZE 8 (11) HOLDER ASSEMBLY NUMBER HOLDER ASSEMBLY NUMBER Angle of Head Angle of В D F ρ Н Sliding Tube Stationary Tube Major Engagement with Std. Electrode Head Height Head Shank Dia. Taper Dia. Taper Offset 18-402 7/8 18-40041-1 18-40043-1 90° 4RW 1-1/16 2 90° .463 1/2 18-403 1 1-1/4 1MT 18-404 18-407 7/8 3/4 1-1/4 2 18-40041-1 18-40043-2 90' 18-408 90° .625 5RW 1 18-409 1-1/4 2MT 7/8 18-422 18-423 4RW 1/2 1-1/16 4 18-40041-1 18-40043-1 90° 18-433 90° .463 1 1MT 18-424 1-1/4 5RW 18-428 1 18-40043-2 90° 18-439 18-40041-1 1-1/4 18-429 90° .625 1-1/4 2MT 3/4 4 7/8 18-442 30° 18-40043-1 30° .463 4RW 1/2 1 2 18-40041-1 18-443 1 1MT 18-444 1-1/4 18-448 1 5RW 2 18-40043-2 30° 18-40041-1 .625 2MT 3/4 1-1/4 18-449 30° 1-1/4 18-462 7/8 30° 4 18-40041-1 18-40043-1 18-463 30° .463 4RW 1/2 1 1 <u>1-1/4</u> 1MT 18-464 18-468 1 5RW 30° 4 18-40041-1 1840043-2 30° 2MT 3/4 1-1/4 18-469 .625 1-1/4


Holders of other shank diameters and lengths or tapers and with Reverse Shank are available on request.

REVERSE SHANK



500 SERIES PREMIUM (EJECTOR) WATER COOLED OFFSET HOLDERS


HOLDER ASSEMBLY NUMBER	Angle of Head	Major Taper Dia. A	Shank Dia. B	Taper D	Std. Taper Engage- ment E	Head Height F	Head Dia. G	C.L. Shank Offset H	Head Thickness J	Threaded Adapter Part No.	
					HOLD	ERS					
18-502 18-503 18-504	90°	.625	1 1¼ 1½	5RW 2MT	3⁄4	1 ¹³ ⁄16	1¼	2	1 ²³ ⁄32		
18-505 18-506	90°	.875	1¼ 1½	7RW 3MT	11/8	2 ⁷ /32	1½	22			
18-522 18-523 18-524	90°	.625	1 1¼ 1½	5RW 2MT	3⁄4	1 ¹³ ⁄16	11⁄4	4			
18-525 18-526	90°	.875	1¼ 1½	7RW 3MT	11/8	27/32	1½	4			
18-562 18-563 18-564	30°	.625	1 1¼ 1½	5RW 2MT	3⁄4	113/16	15⁄16	4	11/8		
18-565 18-566	30°	.875	1¼ 1½	7RW 3MT	11/8	21/32	1%16	4			
				HOLDE	RS WITH 1	THREADED A	DAPTER				
18-5035 18-5036	90°	.625 .750	1¼	5RW 2MT 6RW	3/4 7/8	1 ¹³ ⁄16 1 ¹⁵ ⁄16	11⁄4	2		18-7875 18-7876	
18-5045 18-5046	90°	.625 .750	1½	5RW 2MT 6RW	³ /4 7/8	1 ¹³ ⁄16 1 ¹⁵ ⁄16	11⁄4	2	1 ²³ /32	18-7875 18-7876	
18-5235 18-5236	90°	.625 .750	11⁄4	5RW 2MT 6RW	³ /4 7/8	1 ¹³ ⁄16 1 ¹⁵ ⁄16	11⁄4	4		18-7875 18-7876	
18-5245 18-5246	90°	.625 .750	1½	5RW 2MT 6RW	³ /4 7/8	1 ¹³ ⁄16 1 ¹⁵ ⁄16	11/4	4		18-7875 18-7876	
18-5635 18-5636	30°	.625 .750	11⁄4	5RW 2MT 6RW	³ /4 7/8	1 ¹³ ⁄16 1 ¹⁵ ⁄16	11/4	4	11/8	18-7875 18-7876	
18-5645 18-5646	30°	.625 .750	1½	5RW 2MT 6RW	³ /4 ⁷ /8	1 ¹³ ⁄16 1 ¹⁵ ⁄16	11/4	4		18-7875 18-7876	

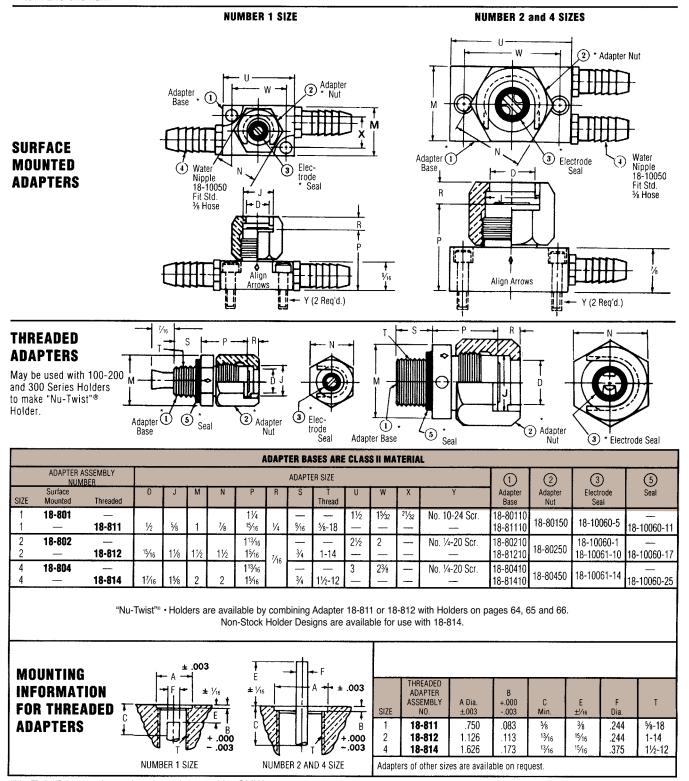
Part No.	Head Angle	Bbl. Dia. B _b	Shank Dia. B _s	Shank Length L	Head Assy.	Bbl. Assy.	"T" Conn. Assy.	Part No.	Head Angle	Bbl. Dia. B _b	Shank Dia. B _s	Shank Length L	Head Assy.	Bbl. Assy.	"T" Conn. Assy.	
				5RW 2MT												
18-601 18-602	90° 30°	1	7/8	3	18-764 18-765		18-725	18-655 18-656	90° 30°	1½	11⁄4	4	18-780 18-781	18-705	18-728	
18-603 18-604	90° 30°	1	1	3	18-764 18-765	18-701	18-726	18-653 18-654	90° 30°	1½	1½	4	18-780 18-781	18-705	18-729	
18-605 18-606	90° 30°	1¼	11⁄4	31/2	18-764 18-765		18-727	18-671 18-672	Str. Str.	1¼ 1½	1¼ 1½	3½ 4		18-704 18-705	18-727 18-729	
18-607 18-608	90° 30°	11⁄4	1½	4	18-764 18-765	18-702	18-730	18-673 18-674	Str. Str.	1½ 1¼	11⁄4 11⁄2	4		18-705 18-704	18-728 18-730	
L	5RW 2MT								5R	W 2M	T with	Threa	ded Adap	ter		
18-611 18-612	90° 30°	1	7/8	3	18-766 18-767		18-725	18-6515 18-6525	90° 30°	11/4	1¼	3½	18-7805 18-7815	18-704	18-727	
18-613 18-614	90° 30°	1	1	3	18-766 18-767	18-701	18-726	18-6535 18-6545	90° 30°	1½	1½	4	18-7805 18-7815	18-705	18-729	
18-615	90°		41/	01/	18-766		10 707		6RW with Threaded Adapter							
18-616 18-617	30° 90°	11/4	11/4	31/2	18-767 18-766	18-702	18-727	18-6516 18-6526	90° 30°	1¼	1¼	3½	18-7806 18-7816	18-704	18-727	
18-618 18-621	30° Str. Str.	11/4	1½ 7/8	4	18-767	18-701	18-730 18-725 18-726	18-6536 18-6546	90° 30°	1½	1½	4	18-7806 18-7816	18-705	18-729	
18-622 18-623	Str. Str.	11/4	11/4	3 3½	18-768	10-701	18-727						7RW 3MT			
18-623	Str.	174 11⁄4	11/2	4	10-100	18-702	18-730	18-661 18-662	90° 30°	11/4	11/4	31/2	18-782 18-783	18-704	18-727	
18-651 18-652	90° 30°	11/4	1¼	3½	18-780 18-781		18-727	18-665	90° 30°	11/2	11/4	4	18-782 18-783	18-705	18-728	
18-657 18-658	90° 30°	1¼	1½	4	18-780 18-781	18-704	18-730	18-663 18-664	90° 30°	11/2	11/2	4	18-782 18-783	18-705	18-729	

BARREL	BARREL	WATER CONNECT.
SUB. ASSY.	PART NO.	SUB ASSY.
18-701 18-702 18-704 18-705	18-37210-8 18-37310-8 18-37510-8 18-37610-8	18-74000-8

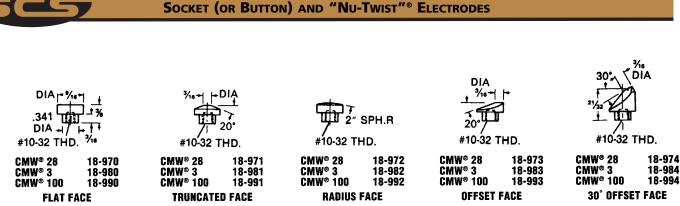
SUB-ASSEMBLIES AND PARTS

MAKE JOB CHANGES QUICKLY AND EASILY—WITHOUT COSTLY LOSS OF PRODUCTION

CMW "Nu-Twist"® FEATURES

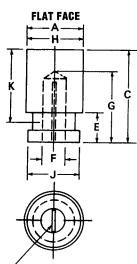

turn and one half.

1. The hex locking nut may be tightened or loosened effectively by hand or wrench for easy replacement of electrodes.


3. Double groove construction in bore or locking nut accurately

aligns and locks the electrode in position with a maximum of a

- 2. "O" ring seals provide water tight connections.
- Through use of baffles in adapters and in electrodes over 1" long efficient cooling is effectively achieved.
- 5. All components are of corrosion-resistant alloys.
- 6. Maintenance costs are unusually low.

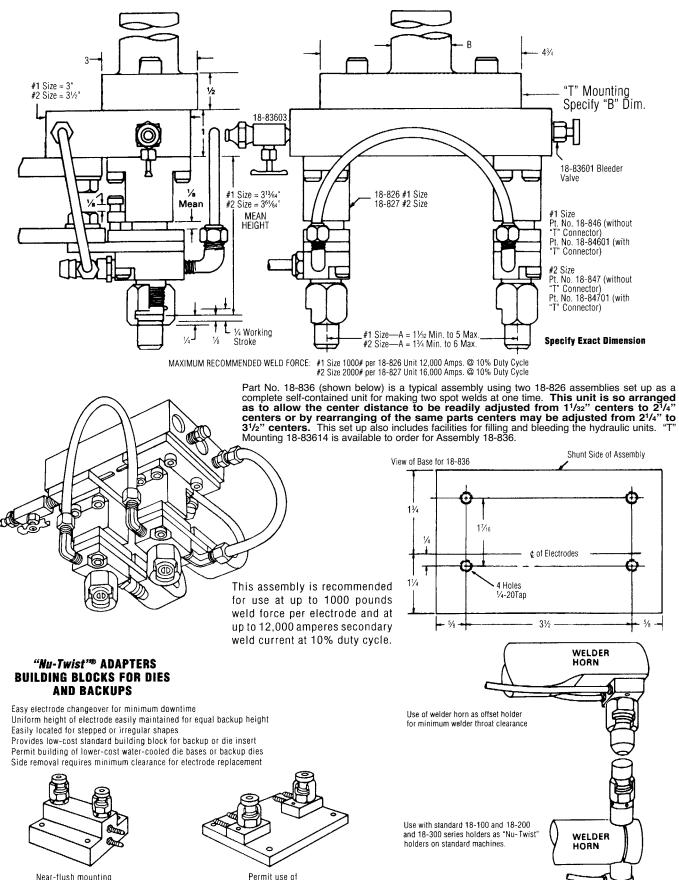

[&]quot;Nu-Twist" is a registered trademark owned by CMW.

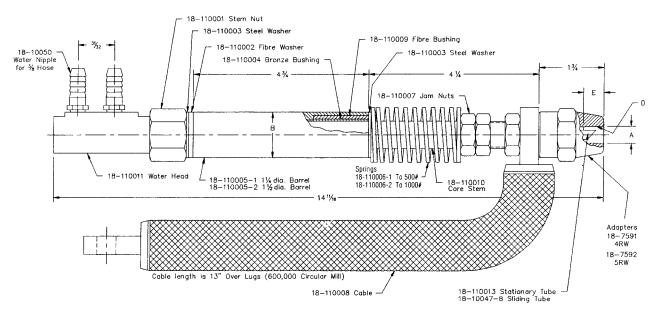
CMW "Nu-Twist"[®], Class II and Class III Welding Electrodes (Use with 800 Series)

No tapers or threads

Can be extracted with a simple turn of hexagon locking nut Any contour in electrode face can be located or relocated in a given position Water circulated to end of electrode for maximum cooling Silver plated contact surfaces on electrode and base for maximum conductivity Provides a simple, low-cost electrode for most special applications Electrodes shown can be modified with contours to provide faces required for most resistance welding applications

	"Nu-Twist"® ELECTRODES												
		ELECTRO	DE PART NO.	H	A	C	E	F	G	J	K Electrode		
Size	Туре	CMW® 3	CMW® 100	Body Dia.	Welding Face Dia.	Overall Length	Adapter Clearance	Water Hole Dia.	Water Hole Depth	Electrode Seat Dia.	Ext. From Adapt.		
1	0 Flat	338750 338030	538750 538030	1/2 1/2	V2 V2	3⁄4 1½		1/4 1/4	³⁄a 11∕a	.625 .625	1/2 11/4		
1	0 Trunc.	378750 378030	578750 578030	1/2 1/2	1/4 1/4	3/4 11/2	-	1/4 1/4	³⁄8 11∕8	.625 .625	1/2 11/4		
1	Flat	338751 338031	538751 538031	5/8 5/8	5/8 5/8	3⁄4 11⁄2	5⁄16 5⁄16	1/4 1/4	⅔ 1⅓	.625 .625	1⁄2 11⁄4		
2	Flat	338012 338052	538012 538052	1¼ 1¼	1¼ 1¼	1 2	5/8 5/8	1/2 1/2	1/2 11/2	1.125 1.125	½ 1½		
4	Flat	338014 338054	538014 538054	1¾ 1¾	1¾ 1¾	1 2	5%a 5%a	3/4 3/4	1/2 11/2	1.625 1.625	1/2 11/2		

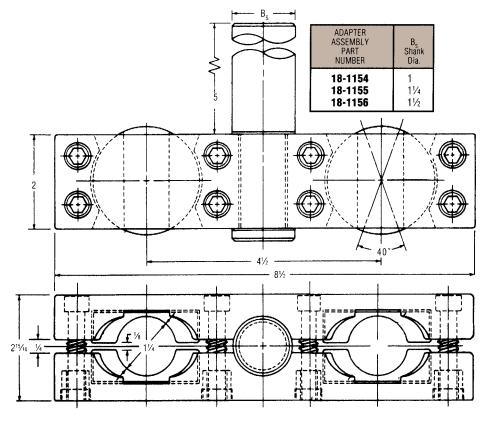

*This baffle is used in electrodes over 1" long to assure water circulation



CMW® Hydraulic Equalizing Adapter units are used to equalize the weld force when two or more welds are required simultaneously. The equalizing action is developed in a closed hydraulic system and is accomplished by hydraulically interconnecting two or more units.

water is brought through base

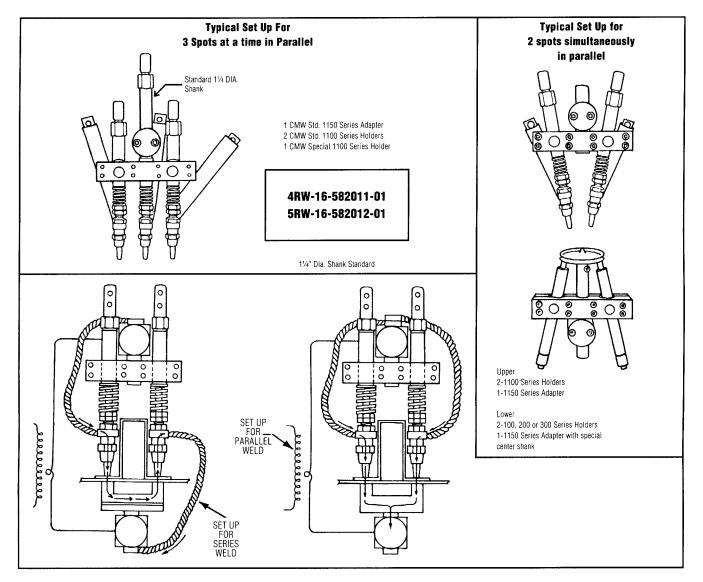
Permit use of simple plate-type die base


Like other low-inertia holders the heavy duty Adjust-A-Pressure Holders are used for multiple spot and projection welding, and are excellent for indirect welding when mounted in the Adjust-A-Angle Adapter.

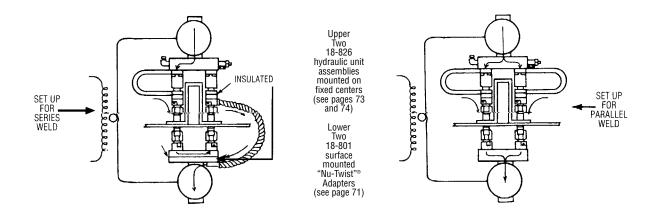
Electrical current is conducted through heavy flexible cables and the holder is insulated to prevent any damaging effects to the spring mechanism. Light duty springs supplied to order.

HOLDER ASSEMBLY PART NUMBER	A Major Taper Dia.	B Barrel Dia.	D Taper	E Standard Electrode Taper Engage- ment	PRESSURE Range (Pounds)
18-1101 18-1102	.463 .625	11⁄4	4RW 1MT 5RW 2MT	1/2 3/4	TO
18-1103 18-1104	.463 .625	1½	4RW 1MT 5RW 2MT	1/2 3/4	500

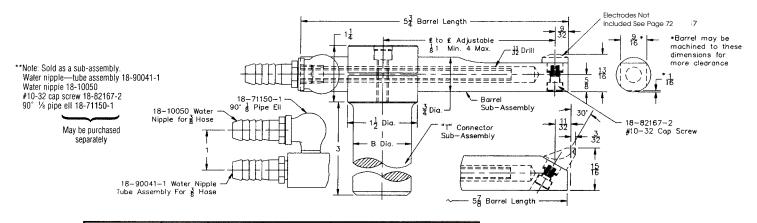
STANDARD ASSEMBLY USES 18-110006-1 SPRING


1150 SERIES ADJUST-A-ANGLE ADAPTERS

5 Max. 1100 SERIES HOLDERS ASSEMBLED IN 1150 SERIES ADAPTER

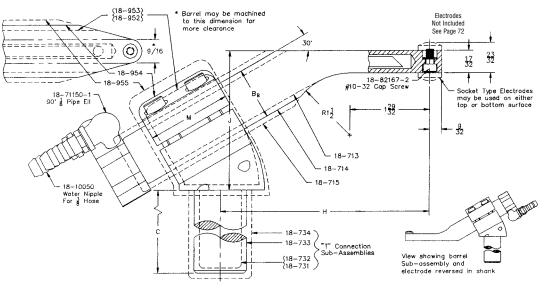

1150 series adjust-a-angle adapters are adaptable for use with spring type low inertia holders 1100 series as well as straight holders 100, 200, and 300 series.

ADAPTERS FOR BARREL SIZES OTHER THAN 1¼ DIA. MADE ONLY TO SPECIAL ORDER



TYPICAL SET UP OF 800 SERIES "Nu-Twist"® UNITS

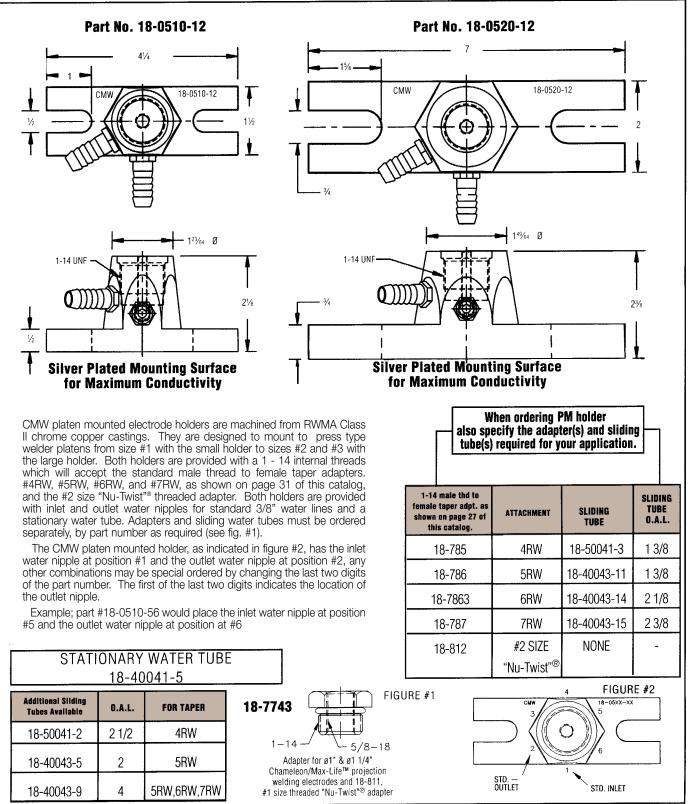
For dual spot welding using hydraulic "*Nu-Twist*"® pressure equalizing subassemblies and surface mounted adapters as basic building blocks


900 SERIES LIGHT DUTY WATER COOLED UNIVERSAL HOLDER

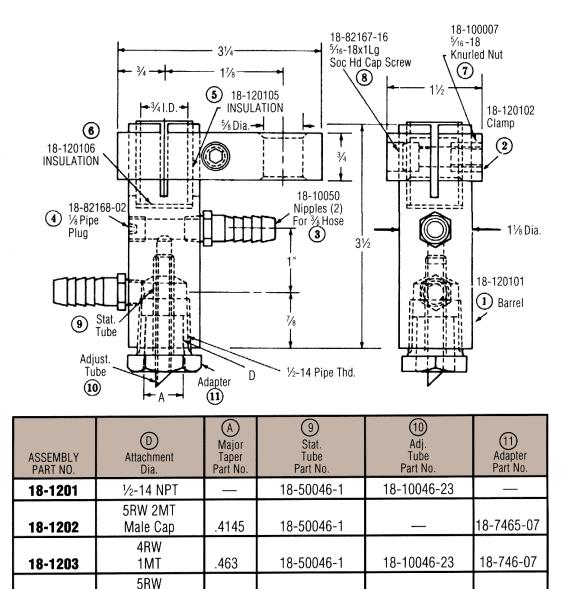
HOLDER ASSEMBLY PART NUMBER	Holder Angle	B Shank Dia.	Barrel Sub-Assembly**	"T" Connection*	Barrel*	
18-901 18-902	90° 30°	3⁄4	18-709 18-710	18-720	18-70910-1 18-71010-1	
18-903 18-904	90° 30°	7/8	18-709 18-710	18-721	18-70910-1 18-71010-1	
18-905 18-906	90° 30°	1	18-709 18-710	18-722	18-70910-1 18-71010-1	
18-907 18-908	90° 30°	11⁄4	18-709 18-710	18-723	18-70910-1 18-71010-1	

Holders of Other Shank Diameters and Lengths or Design Modifications Are Available on Request as Specials.

950 SERIES WATER COOLED PADDLE HOLDER


The Paddle Holder's heavy duty construction enables it to be used at high pressures in hard to reach spots. A minimum clearance is required. The barrel is adjustable in the "T" connection by both rotation and amount of offset.

HOLDER	HOLDER SIZE								
ASSEMBLY PART NUMBER	B _e Barrel Dia.	B _s Shank Dia.	C Shank Length	H Offset Range	J Height Range	M "T" Width	Barrel Sub-Assembly**	"T" Connector	
	Dia.		Longin	• · · · · · · · · · · · · · · · · · · ·	<u>_</u>	Hidai	Oub Associatiy	and designed and the second	
18-952 18-953	1	⁷ ⁄8 1	3	3¾ to 5¾2	21/16 to 31/16	1½	18-713	18-731 18-732	
18-954 18-955	1¼ 1½	1¼ 1½	3½ 4	4-5 ²³ / ₃₂ 4 ⁷ / ₃₂ -5 ¹⁵ / ₁₆	2 ³ ⁄4-3 ³ ⁄4 2 ⁷ ⁄8-3 ⁷ ⁄8	1¾ 2	18-714 18-715	18-733 18-734	


Holders of other Shank Dia. and Lengths or Design Modifications are available on request as Specials.

**Note: Sold as a sub-assembly Water nipples 18-10050 90° ¹/8 pipe ells 18-71150-1 #10-32 cap screw 18-82167-2 May be purchased separately.

These 30° 'T" connector may be interchanged with the 90° Universal Type "T" Conn. Page 70. See page 63 for suggested set ups. CMW platen mounted electrode holders provide an economical means of mounting a wide range of electrodes in all the popular sizes to your press type welder platens. They are machined R.W.M.A. Class II material to provide years of reliable service.

DIMENSIONS ARE IN INCHES.

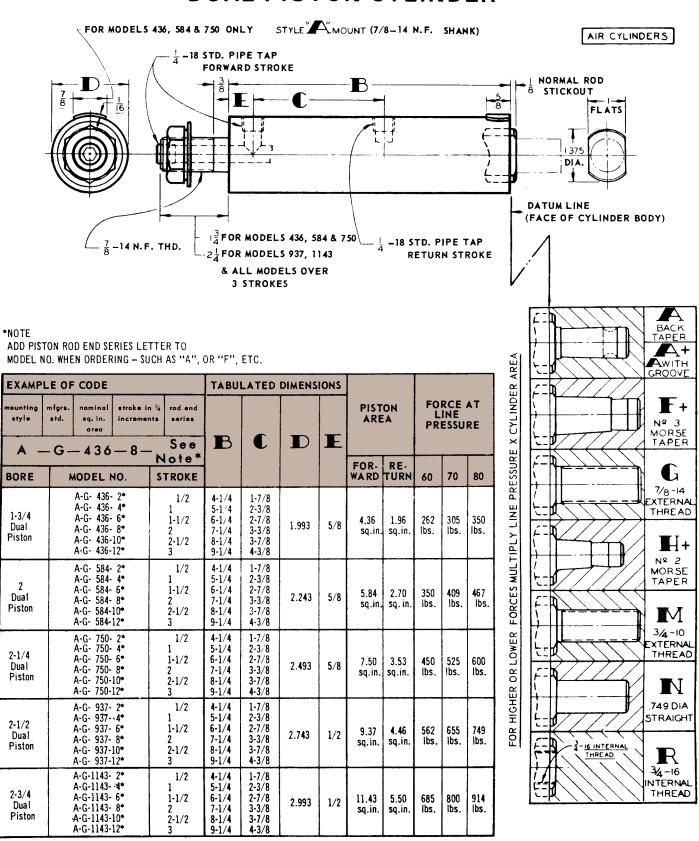
See page 62 for detailed description. All assemblies include 1, 2, 3, 4, 5, 6, 7, 8 and 9.

.625

18-50046-1

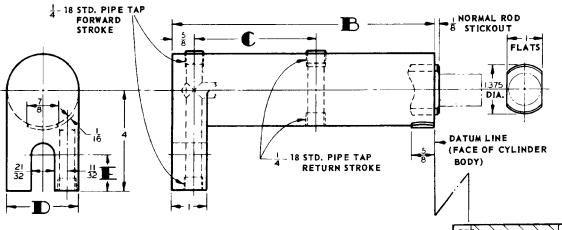
2MT

18-1204


18-747-07

18-10046-23

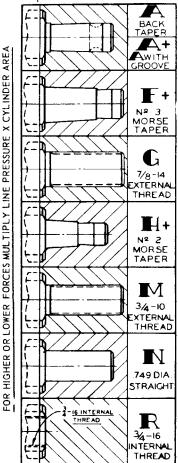
DUAL PISTON CYLINDER



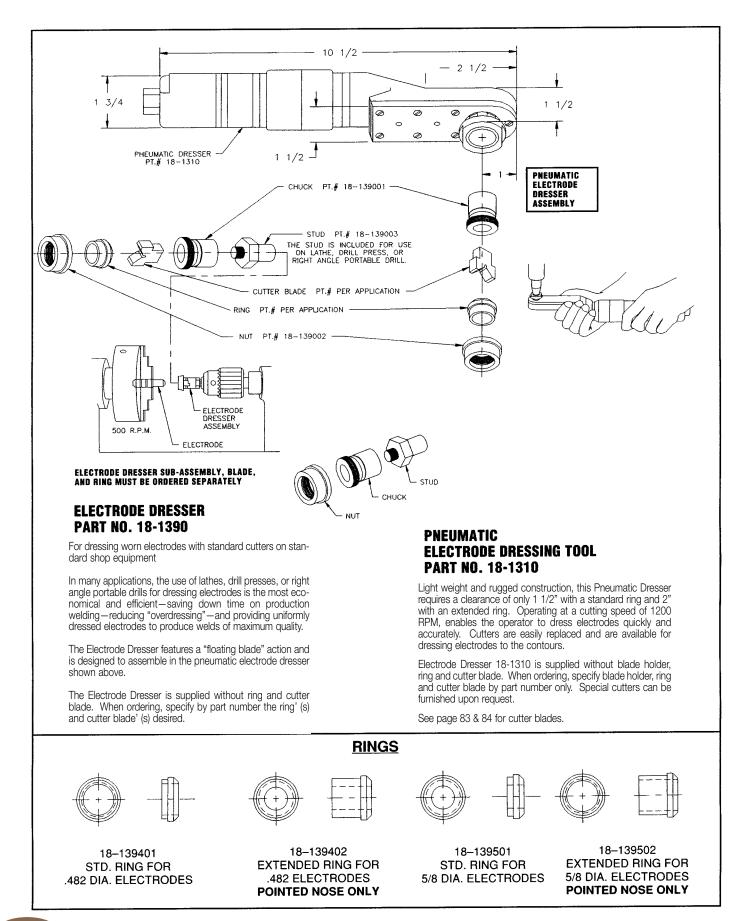
FOR EACH ADDITIONAL 1/2" OF STROKE LONGER THAN SHOWN, ADD 1" TO DIM.**JB**

DUAL PISTON CYLINDER

STYLE "C" MOUNT


AIR CYLINDERS

*NOTE

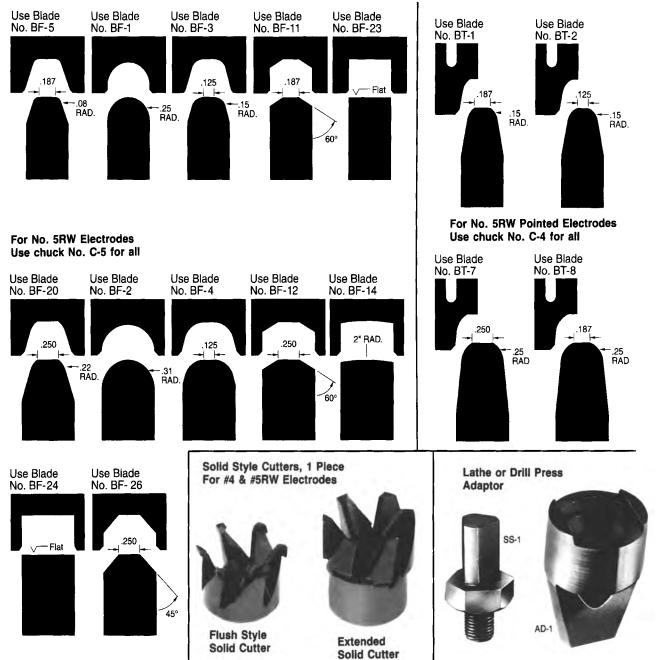

ADD PISTON ROD END SERIES LETTER TO MODEL NO. WHEN ORDERING - SUCH AS "A", OR "F", ETC.

mounting style	EOF CODE mfgrs. nominal std. area stroke ir incremen	nts series		LATED			PISTON AREA		FORCE AT LINE PRESSURE		
C	G-436-8-	Note*					FOR- WARD	RE- TURN	60	70	80
1-3/4 Dual Piston	C-G- 436- 2* C-G- 436- 4* C-G- 436- 6* C-G- 436- 8* C-G- 436-10* C-G- 436-12*	1/2 1 1-1/2 2 2-1/2 3	4-1/4 5-1/4 6-1/4 7-1/4 8-1/4 9-1/4	1-7/8 2-3/8 2-7/8 3-3/8 3-7/8 4-3/8	1.993	2-1/4	4.36 sq.in.	1.96 sq.in.	262 Ibs.	305 Ibs.	350 Ibs.
2 Duai Piston	C-G- 584- 2* C-G- 584- 4* C-G- 584- 6* C-G- 584- 8* C-G- 584-10* C-G- 584-12*	1/2 1 1-1/2 2 2-1/2 3	4-1/4 5-1/4 6-1/4 7-1/4 8-1/4 9-1/4	1-7/8 2-3/8 2-7/8 3-3/8 3-7/8 4-3/8	2.243	2-1/4	5.84 sq.in.	2.70 sq. in.	350 Ibs.	409 Ibs.	467 Ibs.
2-1/4 Dual Piston	C-G- 750- 2* C-G- 750- 4* C-G- 750- 6* C-G- 750- 8* C-G- 750-10* C-G- 750-12*	1/2 1 1-1/2 2 2-1/2 3	4-1/4 5-1/4 6-1/4 7-1/4 8-1/4 9-1/4	1-7/8 2-3/8 2-7/8 3-3/8 3-7/8 4-3/8	2.493	2-1/4	7.50 sq.in.	3.53 sq.in.	450 Ibs.	525 Ibs.	600 1bs.
2-1/2 Dual Piston	C-G- 937- 2* C-G- 937- 4* C-G- 937- 6* C-G- 937- 8* C-G- 937-10* C-G- 937-12*	1/2 1 1-1/2 2 2-1/2 3	4-1/4 5-1/4 6-1/4 7-1/4 8-1/4 9-1/4	1-7/8 2-3/8 2-7/8 3-3/8 3-7/8 4-3/8	2.743	2	9.37 sq.in.	4.46 sq.in.	562 Ibs.	655 Ibs.	749 Ibs.
2-3/4 Dual Piston	C-G-1143- 2* C-G-1143- 4* C-G-1143- 6* C-G-1143- 8* C-G-1143-10* C-G-1143-12*	1/2 1 1-1/2 2 2-1/2 3	4-1/4 5-1/4 6-1/4 7-1/4 8-1/4 9-1/4	1-7/8 2-3/8 2-7/8 3-3/8 3-7/8 4-3/8	2 <i>.</i> 993	1-7/8	11.43 sq.in.	5.50 sq.in.	685 Ibs.	800 Ibs.	914 Ibs.

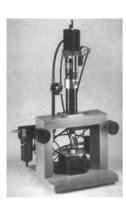
FOR EACH ADDITIONAL 1/2" OF STROKE

LONGER THAN SHOWN, ADD 1" TO DIM.

FLUSH TYPE STRAIGHT



For No. 4RW Electrodes Use chuck No. C-6 for all.



FLUSH TYPE TAPERED

For No. 4RW Electrodes Use chuck No. C-3 for all.

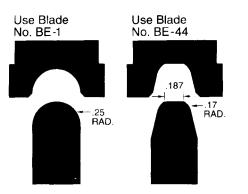
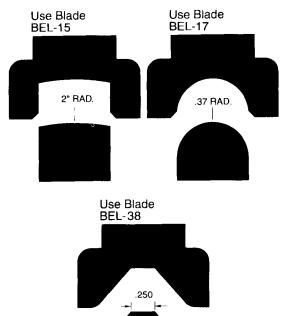
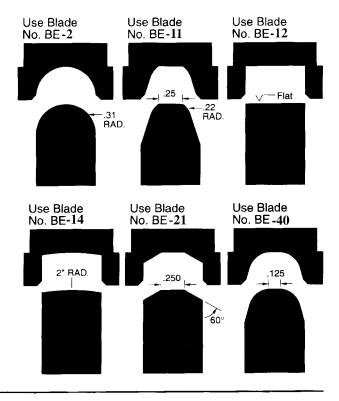


Table Dresser

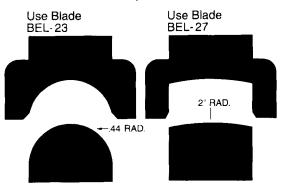

This off-line table dresser is perfect for high production redressing of cap tips. This machine will accomodate both male and female caps (with available tooling)

PART # DT-1

For No. 4RW Electrodes Use Chuck No. C-1; Nut N-1, Ring No. R-2



For No. 6RW Electrodes Use Chuck No. C-2; Nut N-2



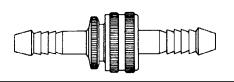
<u>م</u>

For No. 5RW Electrodes Use Chuck No. C-1; Nut N-1. Ring No. R-1

For No. 7RW Electrodes Use Chuck No. C-2; Nut N-3

REAMERS

High Speed steel reamers to rework worn tapers in holders are available for standard 4RW, 1MT, 5RW, 2MI, 6RW, and 7RW 3MT, and 4RW 1MT, 5RW 2MT, and 6RW Cap tapers. All reamers except for the 4RW 1MI are hollow, making it possible to recondition worn holder tapers without removing the water tubes.



4RW 1MT	Part No. 18-1322
5RW 2MT	Part No. 18-1323
6RW	Part No. 18-1321
7RW 3MI	Part No. 18-1324
4RW 1MT cap taper	Part No. 18-1327
5RW 2MI cap taper	Part No. 18-1328
6RW cap taper	Part No. 18-1329

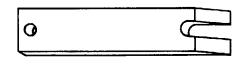
WATER COOLING HOSE PART NO. 18-1350

CMW water-cooling hose is the finest available. made by a prominent hose manufacturer. this hose is 3/8" diameter which properly fits the water nipples on CMW holders. It is available in 50-foot coils or can be cut to length.

HOSE CONNECTOR FOR 3/8 HOSE PART NO. 18-1351

This hose connector, placed in the water-cooling hose line, facilities guick change of holders or dies. The male and female ends of these connectors should be reversed in the inlet and outlet lines to eliminate confusion in changing set-ups.

QUICK CONNECTIVE COUPLING ASSEMBLY PART NO. 18-1352


The plug of this coupling can be mounted on CMW holders converting them for quick hose changes. An automatic water shut-off valve is built into the coupling.

PART NO. 18-1353

HOSE CLAMP

This aircraft type hose clamp gives positive tightening action which eliminates water leakage. It is easy to install and remove from Standard 3/8" Water Hose.

CAP ELECTRODE EXTRACTOR FORK 18-1381-1 FOR 4RW CAPS, 18-1381-2 FOR 4RW CAPS

These hardened steel wedge type forks will make the removal of electrode caps quick and easy. They can be used on both female and male caps.

Order replaceable cutters by -18-130701 Order replaceable handle by-18-130702

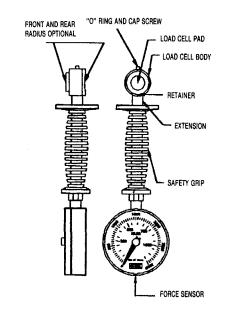
Electrode Dresser– Part No. 18-1307

The Electrode Dresser quickly removes the "mushroomed" portions of spot welding electrodes and renews 4RW or 5RW Taper, dome or pointed electrodes with the proper operating contour.

The Electrode Dresser re-machines both upper and lower electrodes to the correct profile "on the job"-provided both electrodes are identical-without removal of the electrodes from their holders. The Dresser is 10" long, with a cutter of hardened tool steel.

STOCK FORCE GAUGES

 Standard
 Part Number LC2564-73


 2½" sensor, 5.0" grip, 2,000 lbs. of force, ¾" poly locator

Deluxe Part Number LC2164-7393 2¹/2" sensor, 5.0" grip, 2,000 lbs. of force, 15° flexible swivel connection, ³/4" poly locator, insulated back pad

AVAILABLE ON REQUEST

Digital Part Number LC8568-73 3½" sensor, 5.0" grip, 5,000 lbs. of force, ¾" poly locator

REPAIR AND REPLACEMENT PARTS

FORCE GAUGE OPTIONS

SENSOR	SENSOR CONNECTOR		PAD	REAR PAD
2.5" w/o pointer	15° flex swivel 11.0" OAL*	300	Flat Poly	Flat
2.5" w/pointer†*	90° flex swivel 15.0" OAL	600	Flat SS	
4.0" w/o pointer			3/4" Locator Poly +*	3⁄4" poly*
4.0" w/pointer		2,000†*	³ ⁄4" Locator SS	
4.5" process	Standard 5.0" grip	3,000	5.0" Radius Poly	5.0" Radius Poly
4.5" w/pointer	6.0" OAL w/o grip	5,000 ¹	5.0" Radius SS	
	Under 7.0" OAL	10,000 ²	Thin (low profile)	
Digital	Swivel only	¹ Must add SS live pad	Thin Poly	
		² SS live pad and flat rear pad	Thin SS	

† = Standard * = Deluxe

APPROXIMATE PRESSURE EXERTED BY AIR CYLINDER SIZE

DIAMETER		CYLINDER AREA SQ. INCHES				
4"	=	12.5	Х		=	
5"	=	19.5	Х	WELDER	=	ELECTRODE
				GAUGE		FORCE
6"	=	28.0	Х	PRESSURE	=	PRESSURE
8"	=	50.0	Х		=	

Typical Applications Include: Spot Welders, Induction Heating Equipment, Waterjets, Chill Rolls, Molds, Jackets, Heat Exchangers, & Other Industrial Processes & Equipment.

Designed for Water and Water-Glycol Fluids

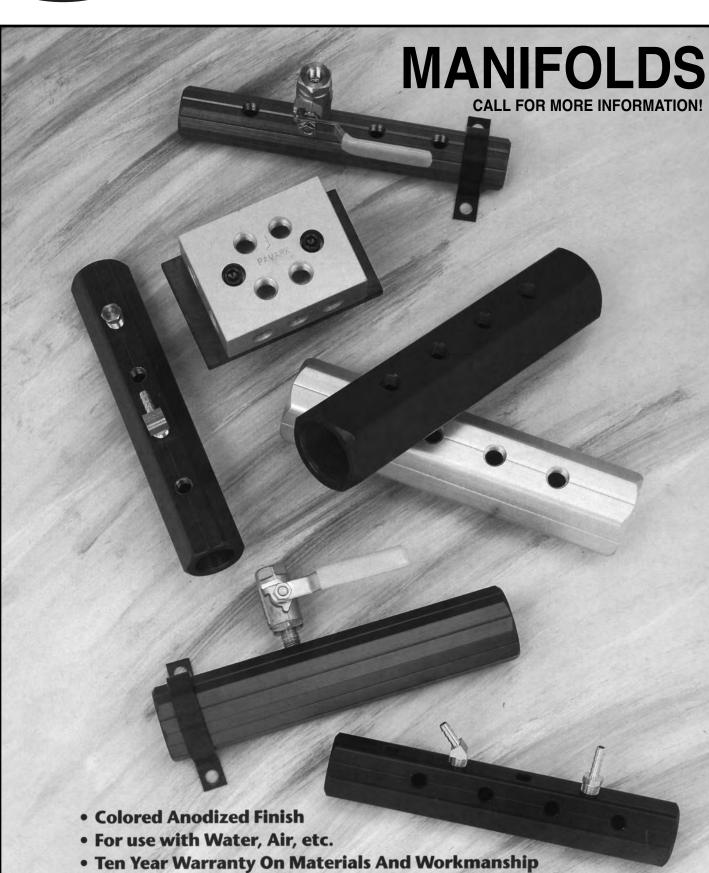
Over 15 Features Included as Standard Items! Many Units are in Stock for Immediate Delivery!

JT MODEL INDUSTRIAL CHILLERS

Typical Applications Include: Small Lasers, Spot Welders, Spindles, Induction Heaters, & Other Industrial Processes & Equipment. Many Units are in Stock for Immediate Delivery!

CAPACITIES FROM 1,500 BTU/HR. TO 13,900 BTU/HR.

Features Include Non-ferrous Wetted Components, Stainless Steel Cabinet, High Pressure Recirculating Pump and More!


ATLAS "OLD" 54 ACCESSORIES

SPECIFICATIONS (Special variations are available to the O.E.M. on special order on the models listed below)

00	SHIELD	"O" SHIELD	WITHOUT GUARD	STAGE	CIRCUIT	ELECTRICAL RATINGS
(h) (f)	531-SWH	531-SWHO	531-SWN	Single	SPDT	
•	571-DWH	571-DWHO	571-DWN	Single	SPDT	
()	532-SWH	532-SWHO	532-SWN	Single	DPDT	
(4)	572-DWH	572-DWHO	572-DWN	Single	DPDT	
(4)	533-SWH	533-SWHO	533-SWN	Single	TPDT	20 A
(b) (f) .	573-DWH	573-DWHO	573-DWN	Single	TPDT	125-250 VAC
(4)	534-SWH	534-SWHO	534-SWN	Two	SPDT	1 H.P.
(h) 🚯	574-DWH	574-DWHO	574-DWN	Two	SPDT	125-250 VAC
(h) (f)	574-DWHA*	574-DWHOA*		Two	SPDT	Heavy Pilot Duty
(4)	574-DWHD**	574-DWHOD**		Two	SPDT	250 VAC Max.
(4)	535-SWH	535-SWHO	535-SWN	Three	SPDT	
(h) 🚯	575-DWH	575-DWHO	575-DWN	Three	SPDT	
(b) (f)	575-DWHA***	575-DWHOA***		Three	SPDT	
₩	536-SWH	536-SWHO	536-SWN	Single	SPDT DB†	
₩	576-DWH	576-DWHO	576-DWN	Single	SPDT DB†	15 A
₩ ()	537-SWH	537-SWHO	537-SWN	Single	DPDT DB†	125-250 VAC
(h) (j)	577-DWH	577-DWHO	577-DWN	Single	DPDT DB†	1/2 H.P. 125 VAC
® €	538-SWH	538-SWHO	538-SWN	Two	SPDT DB [†]	1 H.P. 250 VAC
🖲 🚯	578-DWH	578-DWHO	578-DWN	Two	SPDT DB†	Heavy Pilot Duty
(h)	578-DWHA*	578-DWHOA*		Two	SPDT DB [†]	250 VAC Max.
(h) (f)	578-DWHD**	578-DWHOD**		Two	SPDT DB [†]	
19.19	541-SWH			Single	SPDT	
FL 1R	581-DWH			Single	SPDT	10 A
<i>H</i> , <i>H</i>	542-SWH			Single	DPDT	125 VDC-VAC
LR. LR.	582-DWH			Single	DPDT	

*1st stage Maintained 2nd stage Momentary. **1st stage Momentary 2nd stage Maintained. ***1st stage Maintained 2nd & 3rd stage Momentary.

• Custom Manifolds Welcome

SCS

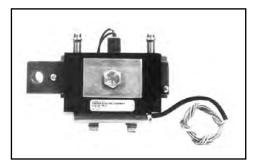
MANIFOLDS

DIRECT WATER COOLED

Undoubtedly the most popular resistance welding contractor for the past twenty years are DARRAH's direct water-cooled SCR Contractors. The selections shown are in stock in welding current ratings to 3200 Amps RMS. Choose between single or double sided cooled, and in SCR voltages to 2000 Volts. These are the workhorses in medium to heavy KVA welding controllers.

DARRAH PART NUMBER	WELDING RATING	WELDING RATING	SGL. CYCLE	SCR VOLTAGE	WATER	COOLED
	Amps. RMS AT 50% DUTY CYCLE	Amps. RMS A 100% DUTY CLCLE	SURGE CURRENT (ITSM)	RATING (PIV) (VRRM)	SGL SIDE	DBL SIDE
D09ST15	900	400	5500	1500	Х	-
D09ST18	900	400	5500	1800	Х	-
D13DT15	1300	700	5500	1500	-	Х
D13DT18	1300	700	5500	1800	-	Х
D13SE18	1300	610	7500	1800	Х	-
D13SE20	1300	610	7500	2000	Х	-
D18SM18	1800	975	11200	1800	Х	-
D18SM20	1800	975	11200	2000	Х	-
D18DE18	1800	970	7500	1800	-	Х
D18DE20	1800	970	7500	2000	-	Х
D21DM18	2100	1225	9000	1800	-	Х
D21DM20	2100	1225	9000	2000	-	Х
D22SN18	2200	1300	21000	1800	Х	-
D22SN20	2200	1300	21000	2000	Х	-
D23DM20	2300	1425	11200	1800	-	Х
D23DM20	2300	1425	1200	2000	-	Х
D26DN18	2600	1710	16400	1800	-	Х
D26DN20	2600	1710	16400	2000	-	Х
D32DN18	3200	2075	21000	1800	-	Х

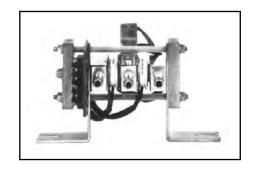
HS-6 DESIGN


DARRAH HS-6 design direct double sided cooled SCR Contractors have proven to be dependable for years in resistance welding controllers. Choose between two popular current ratings with SCR voltages to 1800 Volts.

DARRAH PART NUMBER	WELDING RATING AMPS. RMS AT 50% DUTY CYCLE	WELDING RATING AMPS. RMS AT 100% DUTY CYCLE	SGL.CYCLE SURGE CURRENT (ITSM)	SCR VOLTAGE RATING (PIV) (VRRM)
DO8HS6-12 DO8HS6-14 DO8HS6-16	1200 1200 1200	800 800 800	5500 5500 5500	1200 1400 1600
D12HS6-12 D12HS6-14 D12HS6-16 D12HS6-18	1800 1800 1800 1800	1200 1200 1200 1200	7500 7500 7500 7500 7500	1200 1400 1600 1800

Water Requirements: Amps RMS is achieved with a cooling flow rate of 1.2 gallons (4.5 liters) per minute at 40° C water temperature.

Water Connection: For 3/8 inch add suffix A to part number. For 1/2 inch add suffix B to part number.


Thermostat: If required add suffix J to part number.

Water Requirements: Amps RMS is achieved with a cooling flow rate of 1.2 gallons (4.5 liters) per minute at 40°C water temperature.

Water Connection: Fits 3/8 inch hoses.

- **Thermostat:** If required add suffix J to part number.
- **MOV:** For MOV add suffix M to part number.
- **Example:** 13DT15JM, 1300 Amps RMS, 1500 Volt, with thermostat and MOV.

- MOV: For MOV add suffix M to part number.
- **Terminal Board:** For SCR gate cathode leads add suffix T to part number.
- **Example:** DO8HS6-12AJ, 1200 Amps RMS, 1200 Volt, with 3/8 inch water connection and thermostat.

91

AUTOMOTIVE STYLE SCR CONTACTORS HOSE TYPE

DARRAH Automotive Style SCR Contactors are the chosen favorite among high current/high voltage resistance welding users. All Contactors are rated at 100% continuous and are provided with 2600 Volt SCR's.

DARRAH PART NUMBER	WELDING RATING Amps RMS AT 100% DUTY CYCLE	SGL. CYCLE SURGE CURRENT (ITSM)	SCR VOLTAGE RATING (PIV) (VRRM)	TANG TYPE
DPH7825-468	1200	10,000	2600	С
DPH7330-468	1700	10,000	2600	A
DPH7331-468	1700	10,000	2600	B
DPH7844-468	1700	10,000	2600	<u>с</u>
DPH7845-468	1750	18,000	2600	с
DPH7517-468	2500	18,000	2600	A
DPH7477-468	2500	18,000	2600	B
DPH7824-468	2500	18,000	2600	C

This Series is popular for frequency converter, seam, and flash butt welding applications.

TANG TYPE DESCRIPTION

A) Single Hole: Chrysler design, one .5" diameter hole centered in bus tang.

B) Four Hole: General Motors design, four holes on 1.06" centers.

C) Four Hole Plus Slot: Fisher/Ford design, four holes on 1.06" centers .5" x .75" center slot.

Water Requirements: Amps RMS is achieved with a cooling flow rate of 1.2 gallons (4.5 liters) per minute at 40° C water temperature.

Water Connection: 1/4-18 NPT tapped holes.

Thermostat: All contractors are supplied with a thermostat sensor, 70°C open on rise, re-closes at 58°C, and is isolated to base 2000 Volts. Thermostat leads are 12 inches long.

MOV: For MOV add suffix M to part number.

Example: DPH7824-468M, 2500 Amps RMS, 2600 Volt, with MOV.

Service Tip: It is recommended that power not be left on while water flow is off, as this is a cause for hose rupturing due to internal heating and arching where water resistivity is low.

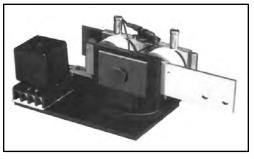
WATER QUALITY

Cooling water requirements for trouble-free operation and reduced maintenance for the DPH Automotive Hose Type design require the following water conditions:

- Resistivity greater than 2000 ohms-CM @ 25°C.
- pH between 7 and 8 (neutral or slightly alkaline).
- Mineral content to be not more than 20 ppm, chlorides.
- 10 ppm, nitrates; 100 ppm, sulfate.
- Total solids content not more than 250 ppm.
- Total hardness (as calcium carbonate) not more than 250 ppm.

SOLID STATE IGNITRON TUBE REPLACEMENTS ONE DARRAH SCR UNIT REPLACES TWO IGNITRON TUBES! NO MORE MERCURY! NO MORE IGNITRON TUBES! NO MORE WORN OUT CONTACTS! NO MORE HIGH PRICES!

Now you can quickly replace all your ignitron tubes or mechanical contractors with DARRAH's solid state replacements.


DARRAH provides a complete line of SOLID STATE SCR IGNITRON TUBE REPLACEMENTS. Replacements are available in both water cooled and air cooled designs, and easily mount on existing Ignitron Tube brackets.

DARRAH's replacements are engineered so that no modifications are required to existing controls or timer. All wiring and assembly is complete and Darrah Ignitron Tube Replacements are supplied with MOV and normally closed thermostat.

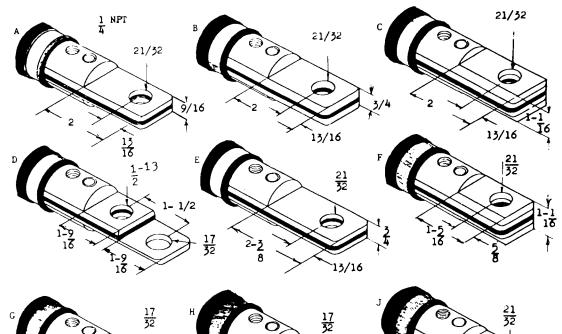
Installation instructions are provided upon request.

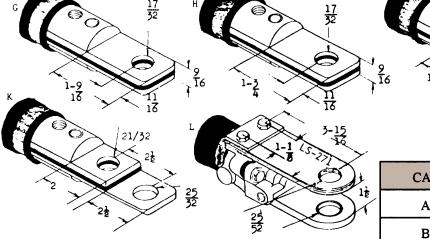
WATER COOLED-DHE SERIES

IGNITION SIZE	DARRAH PART NUMBER	WELDING TRANSFORMER SIZE	WELDING RATING Amps. RMS AT 50% DUTY CYCLE	SGL CYCLE SURGE CURRENT (ITSM)	SCR Voltage Rating (PIV) (VRRM)
A/B	DHE800-22M	100KVA	1300	7500	2200
C	DHE1200-22M	200KVA	1700	9000	2200
J/C	DHE1500-22M	300KVA	1800	11,200	2200
D	DHE1700-22M	550KVA	2300	11,200	2200
D/E	DHE2500-22M	650KVA	2600	16,400	2200
E	DHE3300-22M	750KVA	3200	21,000	2200
Super E	DHE7847-22M	1500KVA	6526	40,000	2200

Single Side Water Cooled Unit

Water Requirements: Amps RMS is achieved with a cooling flow rate of 1.2 gallons (4.5 liters) per minute at 40° C water temperature.


Water Connection: Fits 3/8 inch hoses.


Welding Ratings: Suggested transformer KVA is based on the maximum secondary voltage at 50% duty cycle, 460 Volt incoming A.C. line or higher; typically, spotwelding applications.

Thermostat: All switches are supplied with a thermostat sensor, 50° C open on rise and isolated to base for 2000 Volts. Thermostat leads are 12 inches long.

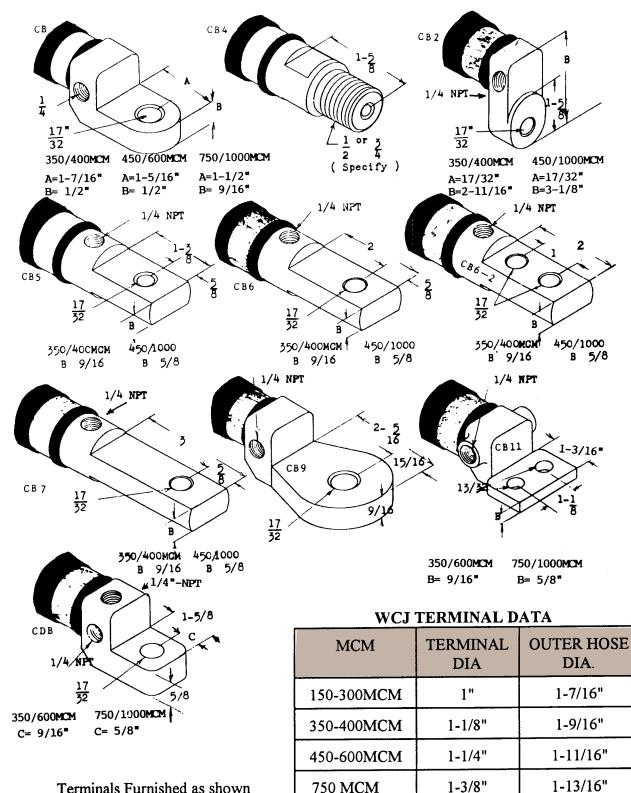
MOV: Included.

Consult factory for seam, projection, or frequency converter, welding requirements.

CROSS REFERENCE

16

3/4

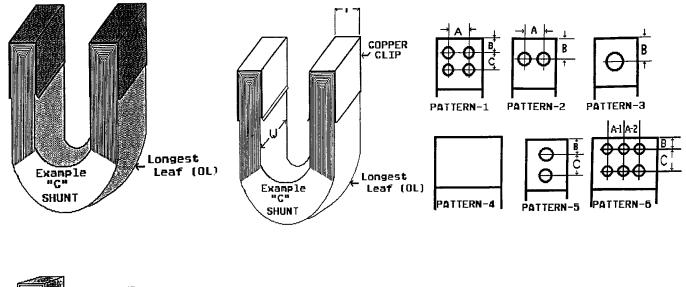

2

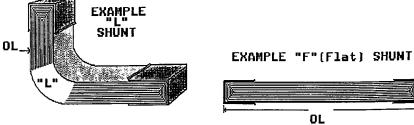
CAL	FLEX	UNIFLEX				
Α						
В	12R	F-75				
С	17H	F				
D	1 7 T	FIT F-75-L				
E	12RX					
F	17HC	FA				
G	9L	N LN				
Н	9L4					
J	12R2	LF				
К						
L						

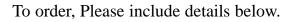
TERMINAL DATA

МСМ	TERMINAL DIA.	OUTER HOSE DIA.			
257 and 300	1-3/8"	1-15/16"			
400 and 450	1-5/8"	2-3/16"			
500	1-5/8"	2-9/16"			
600 and 650	1-7/8"	2-9/16"			
800	2"	2-9/16"			

565

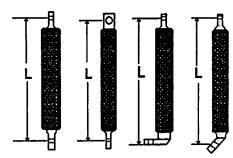



1000MCM

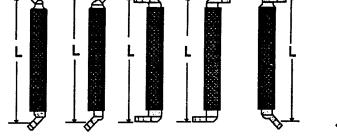

Terminals Furnished as shown UNLESS changes are specified.

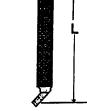
1-15/16"

1-1/2"


All shunts are made from .005" Laminations, with 1/16" copper clips riveted in place, UNLESS Otherwise ordered (please specify) =

<u>Type of Shunt</u> (check one)	Shunt Dimensions	
Туре-С	Length of Longest Sheet (OL)	
Type-J Type-L	Width	_
Туре-Ғ	Thickness (less clips)	
Special	Hole Size (Clearance)	
	PLEASE SHOW DRILL PATTERN	


Air-cooled jumpers are available in circular mill sizes from 400MCM to 2000MCM as a standard. Other circular sizes upon request.


Terminals can be furnished with any desired angle. See terminal style (angle) and dimension chart below.

As a standard and unless otherwise ordered: (1) the 1-1/4" width and corresponding thickness will be furnished up to and including the 1200MCM size, (2) the 1500MCM size will be furnished in the 1-3/8" width and (3) the 2000MCM size will be furnished in the 1-1/2" width. When so ordered, Automotive standards will automatically be met – such as Ford-WKA series and GM-CBL.

TERMINAL (ANGLE) DATA

CLVD

CFF CFR CFL CFV CVVD CLL CLLD CLV

TERMINA		THICKNESS	TERMINAL '							
The contact su	1-1/2" Wide	1-3/8" Wide	1-1/4" Wide	МСМ						
the air-cooled 1-9/16". Othe			3/8	400						
furnished if or			7/16	500						
		7/16	1/2	600						
BOLT H		9/16	5/8	750						
All air-cooled	5/8	11/16	3/4	1000						
drilled 17/32 u ordered.	3/4	1316	7/8	1200						
	1	1-1/6		1500						
	1-7/16			2000						

TERMINAL LENGTH

The contact surface length of the air-cooled jumpers is 1-9/16". Other lengths can be furnished if ordered.

BOLT HOLE SIZE

All air-cooled jumpers are drilled 17/32 unless otherwise brdered.

WHEN ORDERING AIR-COOLED JUMPERS:

Example:	50 pcs.	ACJ/750MCM
•	50 pcs.	ACJ/750MCM

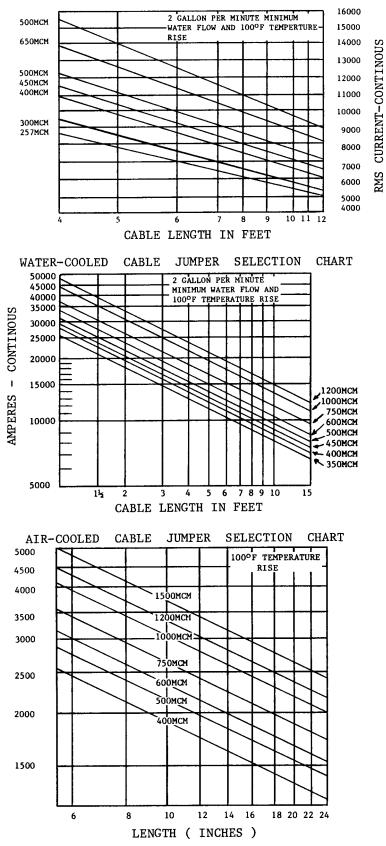
Terminal CFF - 18", or if special, Terminal WKAFF - 18" - etc.

DUAL CONDUCTOR CABLES

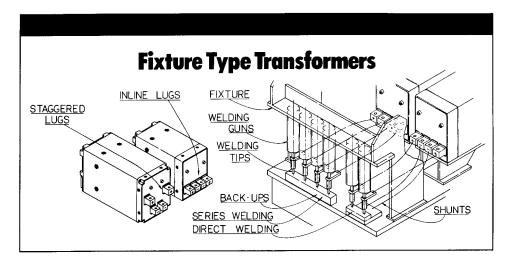
Based on 2 g.p.m. @100° temperature rise Maximum temperature 167° F. OHM's per foot cable-both leads.

Cable Size MCM	300	400	500	600	650	800
Resistance per foot (D.C.) OHMS x 10 ⁻⁶	69.66	52.4	43.	38.8	33.1	27.32
Impedance OHMS x 10 ⁻⁶	78.7	59.5	48.3	41.2	37.8	30.1

Duty Cycle	Multi- Plier
100%	1.00
90%	.95
80%	.90
70%	.84
60%	.78
50%	.71
40%	.63
30%	.55
20%	.45
10%	.32
5%	.22
3%	.17
2%	.14

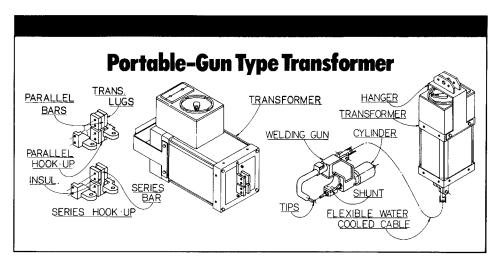

DETERMINING THE MCM SIZE REQUIRED

To determine the required MCM rating, it is first necessary to know (a) the duty cycle, (b) current to be used and (c) length of the cable to be used, measured bolt hole center to bolt hole center.


Once this has been determined, proceed as follows, assuming the duty cycle has been set at 20%, the current at 20,000 amperes and the cable length at 7 feet.

- (1) Consult the multiplier chart, above and at the 20% duty cycle line you find the multiplier of .45.
- (2) Multiply the current required, 20,000 amperes, by .45 and you have the continuous duty current of the cable, 9,000 amperes.
- (3) Refer to the Dual Conductor selection chart, page 99, and find the cable length, 7 feet. Looking up this 7 foot line, find the horizontal line nearest to the continuous duty current of 9,000 amperes, in this case 9,100. Follow the angular line to the side of the chart which then shows the MCM rating required, in this case 500MCM.
- (4) While the above procedure uses a Dual Conductor cable, seven feet long, as an example, the same procedure is used for Single Conductor water-cooled cable jumpers and for air-cooled cable jumpers using the appropriate chart.

DUAL CONDUCTOR CABLE SELECTION CHART

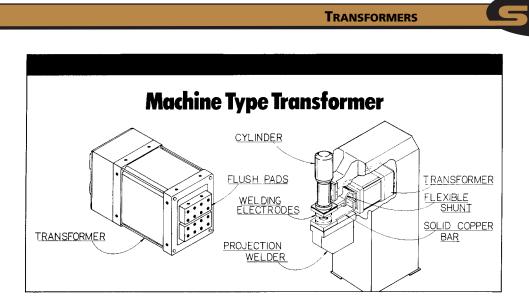


GENERAL INFORMATION: FIXTURE TYPE TRANSFORMERS

Typical Features: Transformers of different KVA Ratings and Secondary Voltages are grouped in families with identical frame cross sections and secondary connections. Two isolated and impedance balanced secondaries are provided. Various tap switch mounting positions and primary disconnect plugs are available.

Typical Applications: Multi-Spot Welding Fixtures. Generally Air-or Watercooled Single Conductor Cables are used to connect the transformer to the welding tool.

Available KVA Ratings: 35 to 200 KVA

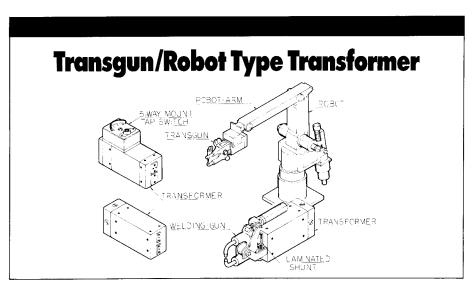


GENERAL INFORMATION: PORTABLE-GUN TYPE TRANSFORMER

Typical Features: The Secondary Connections are designed to accept Low Reactance Dual Conductor welding cables. The Secondaries of the Transformer can readily be changed from series to parallel connections. Transformers are supplied with a hanger for suspension of the Transformer from an overhead structure.

Typical Applications: Resistance welding installations using portable welding guns. The transformer is generally connected to the welding tool with a dual conductor low reactance cable.

Available KVA Ratings: 50 KVA to 200 KVA

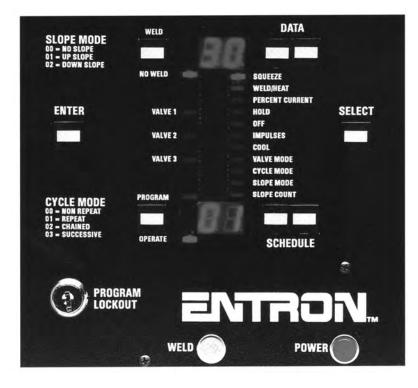


GENERAL INFORMATION: MACHINE TYPE TRANSFORMER

Typical Features: The Transformer is supplied with Secondary Connection Pads conforming to RWMA standards. The Secondary Voltage range covers up to 50% of the high tap voltage. The secondary end of the transformer is potted with epoxy resin to seal out contaminant's such as weldflash and to provide extra support to the secondary connections.

Typical Applications: The Transformer is intended for use in standard spot-, projection-, and seam- welding machines. It is generally connected with bus or laminated shunts to the welding tooling mounted to the upper and lower knee of a welding machine.

Available KVA Ratings: 20 KVA to 500 KVA.


GENERAL INFORMATION: TRANSGUN/ROBOT TYPE TRANSFORMER

Typical Features: These transformers distinguish themselves by their compact and light-weight designs. This features makes the transformers suitable for close coupled transformer-welding gun mounting from which the name "transgun" is derived. Transformers of different KVA ratings and secondary voltages are grouped in families with identical frame cross-sections and secondary connections. Generally, a single secondary voltage is provided, however, some models are equipped with a secondary voltage range and tap switch.

Typical Applications: Resistance welding transguns for robots or multi-spot fixtures are typical applications. Generally, leaf shunts and shunt adapters are used to connect the transformer to the welding tool.

Available KVA Ratings: 20 to 80 KVA.

ENTRON™ CONTROLS FOR RESISTANCE WELDING EN1000 SINGLE CONTACTOR CONTROLS

CONTROLS

Simple to Program

Push buttons and a short three-step procedure make easy work of programming any possible welding schedule.

New Design Reduces Cost

Simplified design significantly reduces production costs which are passed on to you.

· 2 Year Warranty

A two year warranty is offered on all ENTRON parts and assemblies. Expert phone support and application service are available at no cost.

Application Flexibility

Designed for use with single phase welding machines, rocker arm and press type welders, brazing and robotic equipment, and special machines.

FEATURES

Spot Sequence • Pulsation Sequence • Up & Down Slope • Quench/Temper • Forge Delay • Multiple Weld/Multiple Current • Sequence Preheat/Postheat • External Schedule Select • Process & Error Outputs • Seam Sequence

CAPABILITIES

50 Unique Schedules • Chained & Successive Modes • Repeat & Non Repeat • Weld & Valve Control Relays • 3 Valve Output • Multiple Weld Programed • Multiple Job Set-Ups • Easily Programming • Program Only the Functions Required

Design Simplicity

Design simplicity is the key to our ability to manufacture the highest quality weld control with the best delivery, least maintenance, and lowest out of warranty service in the industry.

Field Expandable

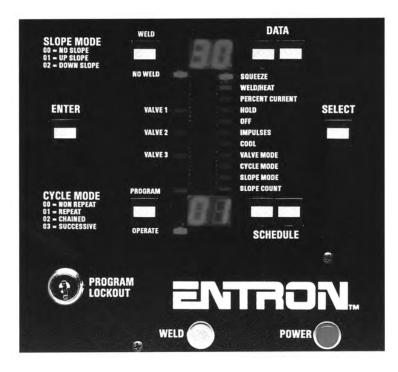
Entron can provide retrofit controls suitable for any manufacturer's controls of any age, type or sequence for installation in the field.

Vault Closing Door Mechanism

D&T cabinet doors equipped with vault locking mechanism to ensure security.

Flexible Applications

EN1000 Single Contactor Controls can be applied to spot welders, seam welders, special machines, or robotic equipment for welding materials of unequal thickness and coated materials.


Multiple Cabinet Options

Available in D, T, E, S cabinet styles with front or side-mounted control panels.

Available Options

Remote Data Entry, Program Lockout Switch, RS 232 Port Interface, Schedule Select, Valve Select (1 of 7) Option.

NTRON CONTROLS FOR RESISTANCE WELDING EN1200 INVERTER BENCH CONTROL

Simple to Program

Using the familiar and intuitive EN1000 platform, push-buttons and a short three-step procedure make easy work of programming any possible welding schedule.

2 Year Warranty

A two year warranty is offered on all ENTRON parts and assemblies. Expert phone support and application service are available at no cost.

Application Flexibility

Designed for use on high accuracy welding applications with short weld times. Higher frequency allows for smaller welding transformers typically con figured with a rectified output. When transformer outputs are rectified, secondary losses are reduced.

103

CONTROLS

Features

Spot Sequence • Pulsation Sequence •
 Up Slope/Down Slope • Quench/Temper •
 Forge Delay • Multiple Weld/ Multiple
 Current Sequence • Preheat/Postheat •
 External Schedule Select • Process &
 Error Outputs • Weld time programmable
 in cycles independent of operating
 frequency • Seam Sequence

Capabilities

 • 50 Unique Schedules • Chained & Successive Modes • Repeat & Non Repeat Modes •
 Weld & Valve Control Relays • 3 Valve Output Circuits • Multiple Weld Programming

 • Multiple Job Set-ups •
 Easily Programmed • Program Only the Functions Required

EN1000 SINGLE CONTACTOR CONTROLS ADVANTAGES

Design Simplicity

Design simplicity is the key to our ability to manufacture the highest quality weld control with the best delivery, least maintenance, and lowest out of warranty service in the industry.

Advanced Design

IGBT's switch with minimal loss and thus run cooler. Simple modular two board design. Uses proven EN1000 Series Control board. LED Status indicators standard. No high capacitance value capacitors to discharge, fail or replace. No calibration required.

Other

30 Amp disconnect standard. 240 VAC 3 Phase line required. Air cooled IGBT's. 50 VA valve transformer included. Complete with all standard RWMA/NEMA programmable functions. 50 schedules. Inverter Over-Current detection. One control covers operation across a broad range of applications. 500 to 10,000 secondary amps. 180 Hz to 2000 Hz frequency range.

Available Options

Remote Data Entry Program Lockout Switch

Welding Transformers are available through standard sources.

• Programming

Simple and intuitive front panel access. Program weld and cool times in increments of cycles for frequency independent timing. 3 Fully programmable valve outputs.

Higher Frequencies

Higher weld heat resolution. More control over weld heat pattern. Smaller lighter transformers. DC secondary current dramatically reduces secondary losses.

Ideal Applications

Ó

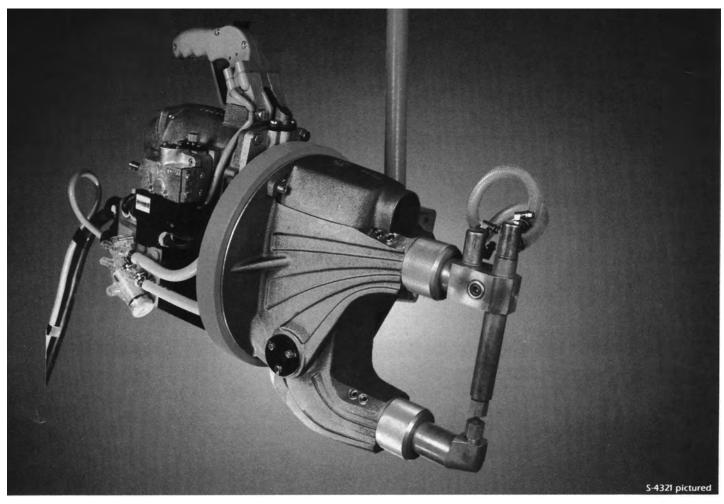
0

EN1200 Dual IGBT Controls can be applied to small heads, portable weld guns, tweezers, special machines, switch welders or robotic equipment. For welding materials of unequal thickness, coated materials and dissimilar metals. Housed in a compact light weight air-cooled cabinet with front door mounted control panel.

WS-25 Weldscope

This vital maintenance tool accurately measures and monitors weld current and time. Measured results on this portable scope are shown on a bright, fluorescent display window, making information easily seen in any light.

WS-10M Weldscope


Daw

Can measure an entire weld cycle or any one of fifty selected impulses, providing an instant, accurate dual line 16-character LCD read-out of RMS current. Battery operated, easy to use and designed to measure secondary RMS resistance weld current and weld time.

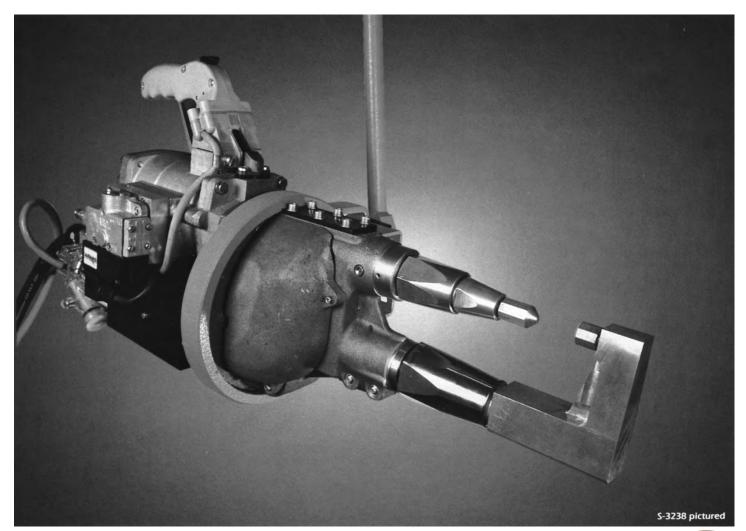
SPOT WELDING GUNS

SPOT WELDING GUN S-4321/S-4322 AIR OPERATED/WATER COOLED

The S-4321 series guns are designed for high production with either single spot or repeat operation. They are compact and highly maneuverable on three planes of operation. Built for production line use, they have the capacity to weld two pieces of 8 gauge mild steel at 6.69" throat depth.

Features

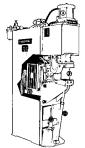
- Rated 31KVA with 25,000 amps secondary short circuit current.
- Maximum electrode force of 1120 lbs. at 85 p.s.i. and shortest throat depth.
- · Ball-race type gyroscopic suspension allows easy rotation.
- Interchangeable standard arms provide throat depths of 6.69 in. through 31.50 in.
- Special arms designed upon request.
- Standard cable length 50 ft.
- Trigger controlled retraction for extra electrode clearance to work stroke.
- · Ideally suited for production line use.
- Capable of welding two pieces of 8 ga. mild steel at 6.69" throat.
- Double action air cylinder for fast operation.
- Fully water cooled.
- Epoxy-resin encapsulated transformer.
- Weight 132 lbs. with short arms.


106

SPOT WELDING GUN S-2178/S-3238/S-3328 AIR OPERATED/WATER COOLED

These guns provide the identical features found in ARO scissors guns in a "C" type configuration. Designed to provide compact, versatile units for joining sheet steel.

Features


- S-2178 rated at 15,500 amps secondary short circuit current.
- S-3238 rated at 18,000 amps secondary short circuit current.
- S-3328 rated at 25,000 amps secondary short circuit current.
- · Ball-race type gyroscopic suspension allows easy rotation.
- · Control by insulated plug-in handle (two possible positions).
- Trigger controlled retraction for extra electrode clearance to work stroke.
- Designed for single spot or automatic repeat with appropriate controls.
- · Fully water cooled.
- Epoxy-resin encapsulated transformer.
- 50 foot cable length standard.

PRESS TYPE WELDERS

	1		Projectio	on Weldei	Data			Spot	veldei	Data				1	Dimensions			
KVA	Type	Throat Depth- Projection	Maximum Short Circuit Secondary Amps- Proj.	Platen Area	Platen Spacing (Shut Height)	T-Slot Centers	Throat Depth- Spot	Maximum Short Circuit Secondary Amps- Spot		orn neter	Electrode Holder Diameter	Cylinder Diameter (All 4'' Stroke)	Maximum Weld Force (80 PSI)	Depth- (Spot)	Depth- (Projection)	Width	Height	Approximate Weight (Without Control)
30	PA-1	12'' 18'' 24'' 30'' 36''	31,000 24,000 21,000 18,500 17,000	6'' x 6''	6'' to 12''	3.5"	18'' 24'' 30'' 36'' 42''	20,800 17,500 15,300 14,200 13,100	2.50''	2.50''	1.25''	6'' 6'' 5'' 5'' 5''	2,250 lbs. 2,250 lbs. 1,550 lbs. 1,550 lbs. 1,550 lbs.	53'' 59'' 65'' 71'' 77''	47'' 53'' 59'' 65'' 71''	16"	78''	1,700 lbs. 1,800 lbs. 1,900 lbs. 2,000 lbs. 2,100 lbs.
50	PA-1	12'' 18'' 24'' 30'' 36''	38,000 31,000 27,000 24,000 22,000	6'' × 6''	6'' to 12''	3.5"	18'' 24'' 30'' 36'' 42''	26,300 21,900 19,700 18,600 17,500	2.50''	2.50''	1.25''	6'' 6'' 5'' 5'' 5''	2,250 lbs. 2,250 lbs. 1,550 lbs. 1,550 lbs. 1,550 lbs.	53'' 59'' 65'' 71'' 77''	47'' 53'' 59'' 65'' 71''	16''	78''	1,800 lbs. 1,900 lbs. 2,000 lbs. 2,100 lbs. 2,200 lbs.
75	PA-1	12'' 18'' 24'' 30'' 36''	47,000 38,300 33,000 29,700 27,000	6'' x 6''	6'' to 12''	3.5''	18'' 24'' 30'' 36'' 42''	31,800 27,500 24,600 22,400 20,700	2.50''	2.50''	1.25''	6'' 6'' 5'' 5''	2,250 lbs. 2,250 lbs. 1,550 lbs. 1,550 lbs. 1,550 lbs.	53'' 59'' 65'' 71'' 77''	47'' 53'' 59'' 65'' 71''	16''	78''	1,900 lbs. 2,000 lbs. 2,100 lbs. 2,200 lbs. 2,300 lbs.
100	PA-1	12'' 18'' 24'' 30'' 36''	54,700 44,600 38,600 34,500 31,500	6" × 6"	6'' to 12''	3.5''	18'' 24'' 30'' 36'' 42''	40,800 35,300 31,500 28,800 26,700	2.50''	2.50''	1.25''	6'' 6'' 5'' 5'' 5''	2,250 lbs. 2,250 lbs. 1,550 lbs. 1,550 lbs. 1,550 lbs.	53'' 59'' 65'' 71'' 77''	47'' 53'' 59'' 65'' 71''	16''	78''	2,000 lbs. 2,100 lbs. 2,200 lbs. 2,300 lbs. 2,400 lbs.
100	PA-2	12'' 18'' 24'' 30'' 36''	61,000 49,700 43,100 38,500 35,200	8'' x 8''	6'' to 12''	5''	18'' 24'' 30'' 36'' 42''	42,000 36,400 32,500 29,700 27,500	3.0''	3.0''	1.50''	8'' 8'' 8'' 6''	4,000 lbs. 4,000 lbs. 4,000 lbs. 2,250 lbs. 2,250 lbs.	53'' 59'' 65'' 71'' 77''	47'' 53'' 59'' 65'' 71''	16''	78''	2,700 lbs. 2,800 lbs. 2,900 lbs. 3,000 lbs. 3,100 lbs.
150	PA-2	12'' 18'' 24'' 30'' 36''	70,500 57,500 49,800 44,600 40,700	8'' x 8''	6'' to 12''	5''	18'' 24'' 30'' 36'' 42''	48,900 42,300 37,800 34,600 32,000	3.0''	3.0''	1.50''	8'' 8'' 6'' 6''	4,000 lbs. 4,000 lbs. 4,000 lbs. 2,250 lbs. 2,250 lbs.	53'' 59'' 65'' 71'' 77''	47'' 53'' 59'' 65'' 71''	16''	78''	2,800 lbs. 2,900 lbs. 3,000 lbs. 3,100 lbs. 3,200 lbs.
200	PA-2	12'' 18'' 24'' 30'' 36''	82,000 66,900 58,000 51,800 47,300	8'' x 8''	6'' to 12''	5''	18'' 24'' 30'' 36'' 42''	51,500 44,600 39,800 36,400 33,700	3.0''	3.0''	1.50''	8'' 8'' 6'' 6''	4,000 lbs. 4,000 lbs. 4,000 lbs. 2,250 lbs. 2,250 lbs.	53'' 59'' 65'' 71'' 77''	47'' 53'' 59'' 65'' 71''	16''	78''	2,900 lbs. 3,000 lbs. 3,100 lbs. 3,200 lbs. 3,300 lbs.
150	PA-3	12'' 18'' 24'' 30'' 36''	83,300 67,900 58,900 52,600 48,000	10'' × 10''	6'' to 12''	6''	18'' 24'' 30'' 36'' 42''	53,400 46,200 41,300 37,700 34,900	3.0''	3.0''	1.50''	12'' 10'' 10'' 8'' 8''	9,100 lbs 6,300 lbs. 6,300 lbs. 4,000 lbs. 4,000 lbs.	65'' 71'' 77'' 83'' 89''	58'' 64'' 70'' 76'' 82''	20''	81''	3,400 lbs. 3,550 lbs. 3,700 lbs. 3,850 lbs. 4,000 lbs.
200	PA-3	12'' 18'' 24'' 30'' 36''	86,000 80,000 61,000 54,500 49,000	10'' x 10''	6'' to 12''	6''	18'' 24'' 30'' 36'' 42''	54,000 46,500 42,000 38,000 35,500	3.0''	3.0''	1.50''	12'' 10'' 10'' 8'' 8''	9,100 lbs. 6,300 lbs. 6,300 lbs. 4,000 lbs. 4,000 lbs.	65'' 71'' 77'' 83'' 89''	58'' 64'' 70'' 76'' 82''	20''	81''	3,500 lbs. 3,650 lbs. 3,800 lbs. 3,950 lbs. 4,100 lbs.
250	PA-3	12'' 18'' 24'' 30'' 36''	95,000 77,000 67,000 60,000 55,000	10'' x 10''	6'' to 12''	6''	18'' 24'' 30'' 36'' 42''	60,000 52,000 46,500 42,500 39,000	3.0''	3.0''	1.50''	12'' 10'' 10'' 8'' 8''	9,100 lbs. 6,300 lbs. 6,300 lbs. 4,000 lbs. 4,000 lbs.	65'' 71'' 77'' 83'' 89''	58'' 64'' 70'' 76'' 82''	20''	81''	3,600 lbs. 3,750 lbs. 3,900 lbs. 4,050 lbs. 4,200 lbs.
300	PA-3	12'' 18'' 24'' 30'' 36''	107,000 87,500 75,600 68,000 61,800	10'' x 10''	6'' to 12''	6''	18'' 24'' 30'' 36'' 42''	65,500 56,500 50,000 47,000 43,000	3.0''	3.0''	1.50''	12" 10'' 10'' 8'' 8''	9,100 lbs. 6,300 lbs. 6,300 lbs. 4,000 lbs. 4,000 lbs.	65'' 71'' 77'' 83'' 89''	58'' 64'' 70'' 76'' 82''	20''	81''	3,700 lbs. 3,850 lbs. 4,000 lbs. 4,150 lbs. 4,300 lbs.
300	PA-4	12'' 18'' 24'' 30''	109,000 88,900 77,000 68,900	12'' x 12''	6'' to 12''	6''		Not A	vailable			14'' 14'' 12'' 12''	12,500 lbs. 12,500 lbs. 9,100 lbs. 9,100 lbs.	z	58'' 64'' 70'' 76''	20''	81''	5,900 lbs. 6,200 lbs. 6,500 lbs. 6,800 lbs.
400	PA-4	12'' 18'' 24'' 30''	118,000 96,000 83,500 74,400	12'' x 12''	6'' to 12''	6''		Not A	vailable			14'' 14'' 12'' 12''	12,500 lbs. 12,500 lbs. 9,100 lbs. 9,100 lbs.	Not Available	58'' 64'' 70'' 76''	20''	81''	6,200 lbs. 6,500 lbs. 6,800 lbs. 7,100 lbs.
500	PA-4	12'' 18'' 24'' 30''	123,000 114,000 98,500 88,500	12'' x 12''	6'' to 12''	6"		Not A	vailable			14'' 14'' 12'' 12''	12,500 lbs. 12,500 lbs. 9,100 lbs. 9,100 lbs.		58`' 64'' 70'' 76''	20''	81''	6,500 lbs. 6,800 lbs. 7,100 lbs. 7,400 lbs.

RA Type Spot Welder Specifications

RWMA Size	Type	Throat Depth	KVA	Maximum Weld Force at 80 PSI	Horn Diameter	Electrode Holder Diameter	Maximum Short Circuit Amperes	Cylinder Diameter	Cylinder Stroke	Maximum Tip Opening	Spacing Inside Horns	Width	Depth	Height	Weight Less Controls
2	RA-2	12'' 18'' 24'' 30'' 36''	30	2050 lbs. 1400 lbs. 1100 lbs. 900 lbs. 750 lbs.	2.50''	1.25''	20,800 16,800 14,900 13,100 12,100	4''	3''	1.50'' 2.12'' 2.75'' 3.37'' 4.00''	8'' - 14''	14''	50'' 56'' 62'' 68'' 74''	52''	920 lbs. 940 lbs. 960 lbs. 980 lbs. 1000 lbs.
3	RA-3	12'' 18'' 24'' 30'' 36''	50	3200 lbs. 2250 lbs. 1700 lbs. 1400 lbs. 1150 lbs.	2.50''	1.25''	27,400 22,100 19,600 17,300 15,700	5''	3''	1.50'' 2.12'' 2.75'' 3.37'' 4.00''	8'' - 14''	14''	50'' 56'' 62'' 68'' 74''	52''	960 lbs. 980 lbs. 1000 lbs. 1020 lbs. 1040 lbs.
3	RA-3	12'' 18'' 24'' 30'' 36''	75	3200 lbs. 2250 lbs. 1700 lbs. 1400 lbs. 1150 lbs.	2.50''	1.25''	31,900 25,900 23,000 20,200 18,400	5''	3''	1.50'' 2.12'' 2.75'' 3.37'' 4.00''	8'' - 14''	14''	50'' 56'' 62'' 68'' 74''	52''	1020 lbs. 1040 lbs. 1060 lbs. 1080 lbs. 1100 lbs.
N/A	RA-4	12'' 18'' 24'' 30'' 36''	100	4600 lbs. 3200 lbs. 2450 lbs. 2000 lbs. 1700 lbs.	3.00''	1.25''	36,500 29,700 26,300 23,200 21,100	6''	3''	1.50'' 2.12'' 2.75'' 3.37'' 4.00''	8'' - 14''	14''	50'' 56'' 62'' 68'' 74''	52''	1240 lbs. 1270 lbs. 1300 lbs. 1330 lbs. 1360 lbs.

Accessories available

Transformer configuration:

- 220 volts or 440 volts
- Series/Parallel switching
- Temperature sensors

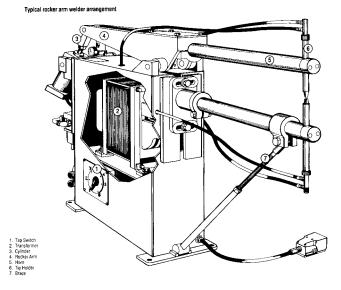
Initiation options:

- Dual palm buttons
- Anti-tie down, anti-repeat
- Dual stage foot switch

Pneumatic options:

- Tip dress
- Mufflers
- Pressure switch firing

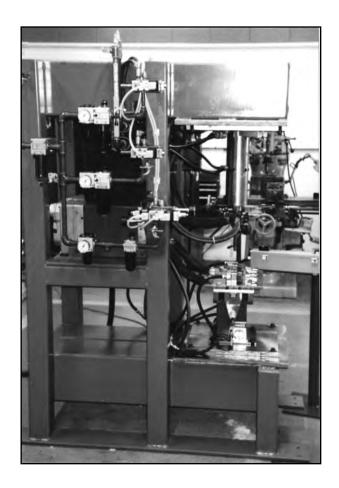
Cylinder configurations:


- Adjustable/Retractable
- Bucking pressure
- Speed controls

Water:

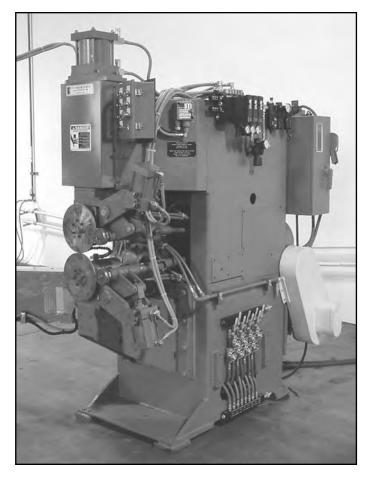
- Automatic water economizer
- Closed systems with flow indicators
- Water chillers

Miscellaneous:


- Universal horns
- Special length holders
- Special adjustment features

SPECIAL MACHINES & TOOLING

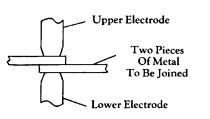




SC

WELD HEADS

111

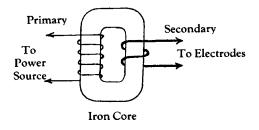

What is Resistance Welding? Resistance welding is one of many methods of fastening two or more pieces of metal together. Some of these methods are listed below in order to illustrate how resistance welding differs from the others.

- 1. Bolting
- 2. Riveting
- 3. Soldering
- 4. Arc Welding
- 5. Resistance Welding

Bolting, riveting, soldering and arc welding all require some additional material to be added to the metal being fastened together. Additionally, bolting and riveting require holes to be made into the metal for the rivets or bolts to fit. Resistance welding requires neither additional material nor holes in the metal.

How is a resistance weld made? The two pieces of metal to be joined are squeezed together by the electrodes on the welding machine so they are in good electrical contact. Then electrical current is passed through them, heating them until they

begin to melt at the spot where they are in contact. The molten metal from the two pieces flows together; then the current is

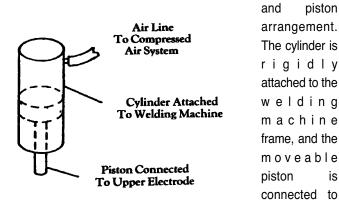


turned off and the molten metal solidifies, forming a solid metallic connection between the two pieces. The term "Resistance Welding" comes from the fact that it is the electrical property of resistance of the metal being welded that causes heat to be generated when current flows through it.

What are the important factors in making a weld? Important to the proper formation of the molten area between the pieces of metal being welded is the magnitude of current, the length of time it flows, and the force squeezing the parts together. The optimum value of these parameters varies with the type of metal and its thickness. For commonly used low-carbon steel 1/16" thick, a typical value of current is 10,000 amps, for a time of 1/4 of a second, and 600 pounds electrode force. Resistance welding schedules are available through American Welding Society, Resistance Welder Manufacturers Association, and from most welding machine manufacturers. How is adequate current obtained? A current of 10,000 amps is not readily available from any standard electrical outlet. Fifteen amps is the maximum current available from common household and office outlets. Even in factories where large amounts of electrical energy is used, 200 amps is typical of the current available from electrical distribution circuits. Therefore, to get the 10,000 amps needed for resistance welding, some device must be used to step the current up from the relatively low level available from the power line.

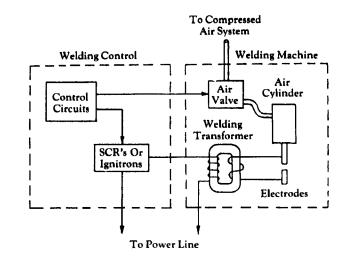
What devise is used? The devise generally used is a transformer. Transformers are usually thought of as stepping voltage up or down, but current can also be transformed in the same way. A transformer consists of two coils of wire, called the primary and secondary, wound around an iron core. Power is transferred from primary to secondary via the magnetic

properties of the iron. The factor by which the current or voltage is stepped up or down is



roughly equal to the ratio between the number of turns of wire in the coils forming the primary and secondary windings of the transformer. In the preceding example, where 10,000 amps was required, a transformer could be make with one hundred turns on the primary and two turns on the secondary; a "turn ratio" of fifty. A two hundred amp current in the primary would be transformed into two hundred times fifty, or 10,000 amps in the secondary, enough to do the welding job.

How is the time controlled? The length of time the welding current flows through the two pieces of metal to be welded is also important. Therefore, the device used to turn the current on and off is a critical part of the system. A relay or hand operated switch might be considered as a switching device, but either would be unsuitable because of the relatively slow speed of operation. In the preceding example the current must be on for only 1/4 of a second. It is very difficult to turn a switch on and off again in 1/4 of a second, and even more difficult to do it consistently. Therefore, some electronic device with no moving parts should be used. Two such devices are available. The ignitron tube, which has been used for many years, is one and the silicon controlled rectifier (SCR), a more recent


development, is another. Both operate by virtue of the fact that a small electrical signal applied to the device allows it to turn on in a small fraction of a second and conduct a large amount of current. Removing the electrical signal allows the device to turn off again. Fast turn-on and turn-off are possible because there are no mechanical moving parts. Ignitron tubes operate on the principle of ionization of mercury vapor, while silicon controlled rectifiers operate on solid-state semi-conductor principles similar to transistors.

How is the electrode force obtained? The third critical factor in resistance welding is the force squeezing the metal parts together (Electrode Force). This force is necessary to assure good electrical contact between the parts being welded, and to hold the parts steady until the molten metal forming the welded joint has time to solidify. Depending on the size and type of welding machine, various methods of developing the electrode force are used, but the most common is to use compressed air in a cylinder

the upper electrode. Compressed air introduced into the cylinder develops a force on the piston which, in turn, pushes the electrode down against the metal being welded. The amount of force applied depends on the area of the piston and the pressure of the compressed air. In the preceding example where six hundred pounds of electrode force was required, a five inch diameter piston would require an air pressure of thirty pounds per square inch.

What is a resistance welding control? It may be concluded from the preceding paragraphs that it is important to apply the welding current at the proper time during the operation of the welding machine. This is the function of the welding control; in fact, the purpose of a welding control is to coordinate the application of welding current with the mechanical motion of the welding machine. More specifically, it tells the electrodes when to close and when to open, and it tells the welding current when to start and when to stop. The welding control may be thought of as the "brains" and the machine as the "muscle" of the overall resistance welding system. How is a welding control connected to the welding machine? Since the welding control provides control of both welding current and machine motion, it must produce two control signals; one to turn the SCR's or ignitrons on and off (for current control) and one to turn an electrically operated air valve on and off (for machine control). The SCR's or ignitrons perform basically as a switching function and so are connected in series with the welding transformer in much the same way as any switch is connected in series with its load. Note also that they are connected in the primary rather than the secondary circuit of the transformer because the current requirements are lower in the primary.

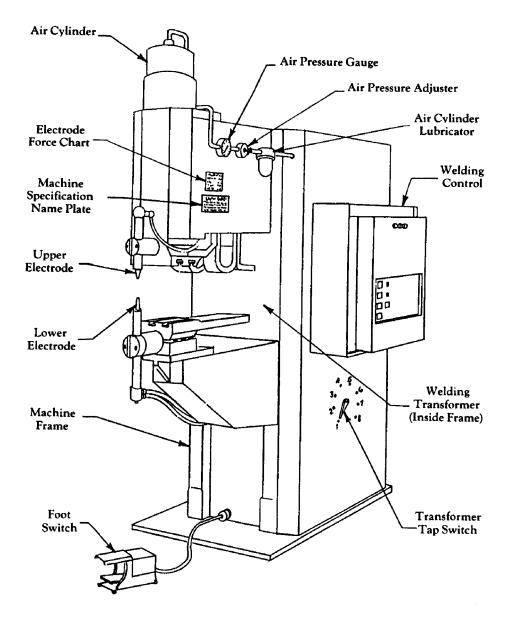


Figure 1

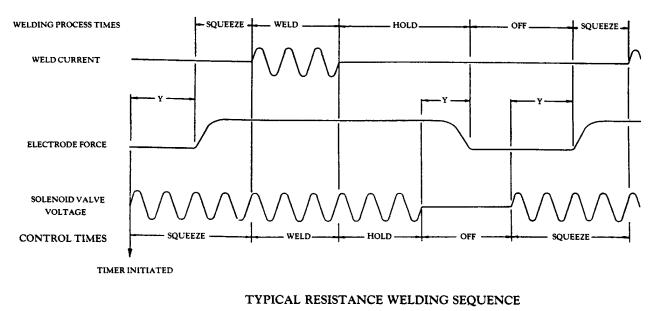
Figure 2 explains with a line drawing a typical welding sequence. The "Welding Process Time" at the top describes the welding machine operating time intervals, while the "Control Timers" line at the bottom refers to the dial settings on the welding control. The following definitions may helpful in understanding this drawing:

Squeeze Time is the time interval between the initial application of the electrode force on the work and the first application of current. Note that this is the process definition. The control definition is the time interval between sequence initiation and beginning of weld current. Squeeze time is necessary to delay the weld current until the electrode force has built up to the desired level.

Weld Time is the time during which welding current is applied to the work in making a weld. It is measured in cycles of line voltage as are all timing functions. One cycle is 1/60 of a second in a 60 Hz power system.

Hold Time is the time during which the electrode force is maintained on the work after the last impulse of welding current ceases. Hold time is necessary to allow the weld nugget to solidify before releasing the welded parts.

Off Time is the time during which the electrodes are off the work. The term is only applicable where the weld cycle is repetitive (control set on "REPEAT").


Weld Current is the current in the welding circuit during the making of a weld. The amount of weld current is controlled by two things; first, the setting of the transformer tap switch determines the maximum amount of weld current available; second, the percent of current control determines the percent of the available current to used for making the weld. Low percent current settings are not normally recommended. Adjust the tap switch so that proper welding current can be obtained with the percent current set between seventy and ninety percent. The only time the percent current should be set below seventy percent is when the tap switch is on its lowest setting and seventy percent current is still too high.

Electrode Force is the result of air pressure applied to the air piston connected directly to the head. The actual amount of electrode force depends on the effective air pressure, weight of the head, and the piston diameter. Most welders have electrode force charts on the side of the machine, tabulating air pressure versus electrode force. If there is not chart available for the machine, use the following formula:

Electrode Force = .78 x D² x P D is the Piston Diameter in inches. P is the air pressure in pounds per square inch. Electrode Force is in pounds.

This does not allow for dead weights and friction. It may be necessary, when changing electrode force from one value to another greatly different value, to re-adjust the speed control valves. Too slow an approach wastes time and may require a much longer squeeze time. Too fast an approach impacts the electrodes and shortens their life, and may also damage the electrode holders or the head. When projection welding, high impact will damage the projection before welding and result in poor projection welds even when all other settings are correct.

The Solenoid Valve is an electrically operated air valve in the compressed air line connected to the air cylinder on the welding machine. When the welding control applies voltage to this valve it opens, allowing compressed air to enter the air cylinder to develop the electrode force.

Y = Machine Operating Time

The table in Figure 3 is usually the best schedule to follow. If for some reason this schedule cannot be followed, contact your welding machine manufacturer or refer to R.W.M.A. or A.W.S. standards for resistance welding.

Column 1 — Column one specifies the thickness to be welded. Note that this value is the thinnest of two or more sheets to be welded together. This also means that if no marking is allowed, the flat electrode must be used against the thicker material. The controlled tip or electrode must be against the thinner material.

Column 2 — Column two gives the maximum size of the contact face (small "d"). Notice that the angle beyond the contact face is small (30ø). A small angle here will give longer electrode life, (lower rate of spreading out into too much contact area, called "mushrooming"). This dimension, (d) is very important. If it gets too large, weak welds will be made unless the weld current is turned higher and higher accordingly. Should this face, (d), be too small, electrode force and current would have to be lowered, resulting in a too-small spot. The diameter can be easily measured by measuring the diameter of the marking on the part.

Column 3 — Column three is the minimum recommended size of the electrode to carry the welding current without undue wear or rapid change of electrode contact area.

Column 4 — Column four is used where best appearance is desired. This shape of electrode must be turned on a lathe. Electrode life can be extended by the use of proper tip dressing tools.

Column 5 — Column five indicates the proper tapered holder to use to insure that the electrode force does not bury the electrode into the holder.

Column 6 — Column six specifies actual electrode force. Here the air gauge reading must be translated into electrode force. Refer to "electrode force" definition in the preceding section.

Column 7 — Column seven is the weld time. This is the length of time weld current flows and can be set exactly to these values on the weld time thumbwheel.

Column 8 — Column eight - "Hold Time", must not be set shorter than these values. To do so may result in cracked or damaged welds and bad surface discoloration. Longer hold times will not do harm except to take a little longer for the overall weld sequence.

Column 9 — Column nine, welding current, is the last setting to make and check out. This setting, assuming all preceding adjustments are correct, will determine the size of the spot. Therefore, it is not necessary to know the actual current in amperes because you will arrive at or near these tabulated values if the spot is the correct size or strength. (See Columns 10 and 11). Check the electrode contact area from time to time and make the necessary changes in percent current as the electrodes wear. Re-dress electrodes as required.

Column 10 — Column ten specifies the minimum shear strength of a single spot weld using test strips at least as wide as specified in Column 13 (L).

Column 11 — Column eleven is the diameter of the fused zone. This can be checked two ways. One; peel the test strip and measure the nugget size. Two; place two test strips in "V" formation and spot weld at the bottom. Then twist the single spot in shear and measure the diameter of the fused zone.

Column 12 — Column twelve sets up the minimum spot spacing. This means that if a spot is placed any closer, there will be undue shunting of current into previously made spots. This in turn will result in smaller spot sizes beyond safe limits for the subsequent spots to be made. This is one of the reasons test strips should be made at the same spacing as would be made on the assembly.

Column 13 — Column thirteen specifies the minimum overlap of the parts for best quality welds. This must be followed for test welds, especially for shear tests.

116

	2 J Electrode Diameters and Shave	sters and Sha	+ }	۲ ۲	•	2	8	6	10	1	12	5
	Har ,		Radius									
	Face		Face							Diameter	Minimum	Minimum
	2		}+							of Fused Zone	Weld	Contacting
Thistower	•		-						Weld Sheer Strenth	(Approx.)	Spacing	Overlap
			~~			:			(For Steels Having		·	•
5)			Weld			Ultimate Tensile			
Thinest	i v					Time	PioH	Welding	Strengths of 90,000			
Outside	Ĩ		Ţ	Recommended	Weld	(Cycles)	Time	Current	PSI and below)	+ 30 +	-S-	Ŧ
Piece	b mumber	Min. D	Radius R	Minimum Standard	Force	(60 Cycles	(Cylces)	(Ymps.)	Minimum Strength	MQ	s	 لىر
(Inches)	(Inches)	(Inches)	(Inches)	Electrode Size	(Lbs.)	per Sec.)	Min.	(Approx.)	(Lbs./Weld)	(Inches)	(Inches)	(Inches)
0.010	0.125	1/2	7	Morse Taper No. 1	160	*	\$	000'+	961	6.11.0	14	air
0.021	0.187	1/2	2	Morke Taper No. 1	244	Ŷ	e 0	6,500	300	0.139	8/6	2/16
160.0	0.187	1/2	2	Morse Taper No. 1	326	8	õ	8,000	530	0.161	1/2	2/16
0.040	0.250	5/8	-	Morse Taper No. 2	412	01	13	8,800	812	0.181	3/4	7/1
0.060		5	,	;								•
0.00.0	047-0	8	-	Morie Laper No. 2	554	1	2	009'6	1,195	0.210	2/8	9/16
0.062	0.250	58	^	Morse Taper No. 2	670	18	20	10,600	1,717	162.0		5/8
0.078	0.312	2/8	^	Morse Taper No. 2	£06	25	œ.	11,800	2,365	0.268	1 1/8	11/16
0.094	0.312	5/8	*	Morse Taper No. 3	1,160	*	35	13,000	3,054	0.304	1 1/4	314
0.109	0.375	8;2	+	Morke Taper No. 3	1,440	45	ę	14,200	3,672	0.338	1 5/16	91/11
0.125	0.375	8/2	+	Morse Taper No.)	1,760	3	45	15,600	4,300	0.375	1 1/2	7/8
0.156	0.500	8/2	9	Male or Female Threaded	2,500	63	8	18,000	6,500	0.446	1 3/4	-
0.187	0.625	-	s	Male or Female Threaded	3,340	001	55	20,500	000'6	0.516	2	1 1/4
0.250	0.750	1 1/4	و	Male or Female Threaded	5,560	230	3	26,000	18,000	0.660	*	1 1/2
* Electro	* Electrode Material - RWMA Class 2.	al - RWN	MA Class	s 2.								

Figure 3

تحاكا

- 1. **Too short squeeze** time can result in metal expulsion, burned electrodes, bad welds, marked work, and damage ignitron tubes or SCRs.
- 2. **Too long a weld time** will shorten the life of the electrodes, cause excessive indentation and cause internal cracks which can result in weld failures.
- 3. **Weld quality**, you cannot judge weld quality by looking at the finished weld. If non-destructive testing is used, test strips of the same material and combination must be used.
- 4. Too short weld time will result in low weld strength, assuming all other factors are normal.
- 5. **Too short hold time** can result in surface expulsion, electrodes sticking, internal cracks in weld nuggets, and sometimes even cracks in parent metal. Follow the tables provided for minimum time.
- 6. Weld pressure too low can result in expulsion of metal, electrode damage (sticking), short electrode life, internal cracks in weld nugget, and sometimes excessive indentation.
- 7. Weld pressure too high can result in low or variable weld strength, excessive weld current requirements, mushrooming of electrodes, and excessive indentation.
- 8. With all other settings correct, adjust weld current to meet weld quality standards.
- Electrode contact face too small will result in too small a spot, excessive electrode mushrooming, and excessive indentation. Too large an electrode contact area will result in too large a weld (assuming current is set accordingly), and internal cracks.
- 10. **Electrode misalignment** or miss-matched will result in expulsion and displaced weld nugget and accelerated electrode wear.
- 11. **Insufficient cooling** will result in mushroomed and short life electrodes, cracks on the surface, and excessive indentation in some cases. It is very important that the water flows in through the water quill and back out the outside of the quill. Also, the water quill must be bottomed gently against the inside of the electrode cavity every time an electrode is replaced.
- 12. **Dirty material** Dirt sticking on the surface of the electrode will shorten electrode life and mark and burn the work surface.
- 13. **Excessive electrode approach speed** will accelerate electrode wear and damage the equipment. On projection welding, it can damage the projection, resulting in poor weld quality.
- 14. Do not make a weld over the same spot twice to try to cover up for a bad weld. To do so effectively, the work must cool and then be hit with a much higher current. If you cannot get a weld with one hit, either the set-up of the machine is incorrect or you are not using a machine of sufficient size to make the weld.

DO'S

- 1. Use the proper electrode material for the job you are doing.
- 2. Use Standard Electrodes whenever possible.
- 3. Use the most suitable tip diameter for the thickness of stock being welded.
- 4. Use open sight drains to observe more readily the water flow through the holders.
- Connect the water inlet hose to the proper holder inlet so that the water flows through the center cooling tube first.
- Internally cool the spot welding tips with cool water flowing at a rate of at least 1¹/₂ gallons per minute through each tip.
- Be sure the internal water cooling tube of the holder projects into the tip water hole to within 1/4" of the tip hole bottom.
- Adjust the internal water cooling tube of the holder to the proper height when changing to a different length tip.
- Be sure the top of adjustable water cooling tube in the holder is cut at an angle so as to avoid jamming tip down and shutting water off.
- 10. Place a thin film of cup grease on the tip taper prior to inserting it in the holder, to make it easier to remove.
- 11. Use ejector type holders for easy removal of tips and to avoid damage to tip walls.
- 12. Keep the tip taper and holder clean, smooth and free of foreign deposits.
- Dress spot welding electrodes frequently enough to maintain the quality of the welds.
- 14. Dress electrodes in a lathe to their original contour whenever possible.
- 15. Use a rawhide or rubber mallet for striking holder or tips in aligning operations.
- 16. Provide flood cooling on both sides of the seam welding wheel.
- 17. Use properly designed knurling wheels to maintain proper seam welding wheel shape.

DON'TS

- 1. Never use unidentified electrodes or electrode materials.
- 2. Avoid special, offset or irregular tips when the job can be done with a standard straight tip.
- 3. Do not use small tips on heavy gauge welding jobs or large tips on small work.
- 4. Do not forget to turn on the cooling water full force before starting to weld.
- 5. Never use a water hose that will not fit the holder water connection nipples snugly.
- 6. Do not allow water connections to become leaky, clogged or broken.
- 7. Avoid using holders with leaking or deformed tapers.
- 8. Never use electrode holders that do not have an adjustable internal water cooling tube.
- Do not permit adjustable water tube to be "frozen" by accumulation of deposits. A few drops of oil periodically will keep the tube free.
- 10. Do not allow electrodes to remain idle in tapered holder seats for extended periods.
- 11. Do not use pipe wrenches or similar tools in removing electrodes.
- 12. Avoid using white lead or similar compounds to seal a leaking taper.
- 13. Never permit a spot welding tip to mushroom enough to make dressing difficult.
- 14. Never dress electrode with a coarse file.
- 15. Do not pound on the holder or tip with a steel hammer in aligning the welder arms.
- 16. Avoid the use of seam welder wheels too thin to stand the heat of pressure of your job.
- 17. Do not permit seam welding wheels to run off the corners of the work being welded.

5**CS**

×.
X
Ľ
Ń
R
<.
8
Ì
Q
O.
R

TOLERANCE ON RECTANGLES	ToleranceToleranceUp to 1/2"1/2" to 1"1" to 2"2" to 4"Round RodsOverWideWideWideWide	Diameter Hezagonal Width Thickness Width Thickness Width Thickness Width Thickness	± .002 ± .005 ± .007 ± .005 ± .005 ± .005	± .003 ± .005 ± .007 ± .006 ± .009 ± .007 ± 0.50% ± .008	± .004 ± .006 ± .009 ± .009 ± .009	+ 006 + 012
		Width	₹ .005	5	 	2
	Toleranc Over Flats	Hexagona	*	* 8	*	*
	Tolerance Round Rods	Diameter	* .002	± .003	± .004	*
	r or thickness)		Up to 5/8", incl.	5/8" to 1", incl.	1" to 2.1/2", incl.	2.1/2" to 3.1/8" incl.
	SIZE (Diameter or thickness)			CLASS I	CLASS II	

CLASS III and IV

Add \pm .001 to above up to .015, all \pm .002 for tolerance over .015.

CASTINGS CLASS II CLASS II CLASS IV CLASS V

ount of Material to	Cast Intergrally	1/4"		3/8"	1/2"
Recommended Minimum Amount of Material to	Be Over Tube When Tube is Cast Intergrally In Castings:	0 to 25 lb. Castings		25 to 100 lb. Castings	100 lbs. and over Casting
ALLOWANCE FOR FINISH	1/16" to 1/8"	1/8" to 3/16"	3/16" to 1/4" (50 to 500#)	5/16" to 3/8" (over 500#)	
TOLERANCE AS CAST	± 1/32" on all dimensions	± 1/16" on all dimensions	± 3/32" on all dimensions	± 1/8" on all dimensions	
SIZE OF CASTING	Plate patterns - all weights	Loose paterns - up to 50#	- 50 to 100#	· 100 and over	

	100 tost and over Catting	RECTANGULAR BARS	ALLOWNCE ON THICKNESS	FINISH NICE TRUE	THICKNESS INCLATING OVER THUS	Inc. 1-1/2" $1/4 \pm 1/8$	Over 1-1/2" 3/8 ± 1/8 3/8 ± 1/8	18 WIDTH ALLOWANCE ON WIDTH	(8 Incl. 1-1/2" 1/4 ± 1/8	Over 1-1/2" 3/8 ± 1/8	LENGTH - ALLOWNACE SAME AS BOUND BARS			DIA. WIULH OK THICKNESS	Up to 12" long ± .005		Over 12" long ± .010
(******				ALLOWANCE ON DIAMETER	LENGTH LENGTH)" Over 60"		8 5/8±1/8	8 3/4±1/8		LENGTH	ALLOW	1/2"		1-1/2"	2"	2-1/4"
		FORGINGS	ROUND BARS	ANCE ON	LENCT	Incl. 60"		1/2 ± 1/8	5/8±1/8		ANCE ON						
		FOR	ROUN	ALLOW.	LENGTH		+-	3/8±1/8	1/2 ± 1/8		AVERAGE ALLOWANCE ON LENGTH	LENGTH	Incl.	12" Incl.	Over 12" to 18" Incl.	Over 18" to 30" Incl.	
					FINISH	DIA.		Incl. 3"	Over 3"		AVERA		Up to 6" Incl.	Over 6" to 12" Incl.	Over 12" i	Over 18" 1	Over 30"
				THICK	1/4 ± 1/16	5/16±1/8	1/2 ± 3/16	3/4 + 1/4	1 + 1 4				+ .002	+ .003	+ .004		
		DISCS	ALLOWANCE	LD.	1/2 ± 1/8	5/8 ± 1/4	3/4 ± 1/4	1-1/4 + 1/4			LENANCE	1/64	.000	.000	000		± .010
		RINGS & DISCS		O.D.	1/2 ± 1/8	3/4 ± 1/8	7/8±1/4	1-1/4+1/4	1-112+3/8		FINISH LULEKANU	O.D. ± 1/64	to 6"	10"	U.		NESS
			DIANETED	DIAMELEN	0" Incl. 12"	12" Incl. 20"	20" Incl. 30"	30" Incl 36"	Over 36"				1.D. Up to 6"	6" to 10"	10" Un		THICKNESS

The above tolerance and finish allowances are general. Specific parts will vary according to nature of part.

COPPER BASE ALLOYS	CLASS 1	CLASS 1 CLASS 2	CLASS 3	CLASS 1	CLASS 2	CLASS 3	CLASS 1	CLASS 2	CLASS 3	CLASS 3 CLASS 1 CLASS 2		CLASS 3	CLASS J CLASS 1 CLASS 2	CLASS 2	CLASS 3
ROD DIAMETER	ROUND	ROUND ROD STOCK	K												
Up to 1" Dia.	17,500	35,000	50,000	65 ^R b	75 ^R b	90 ^R b	80%	75%	45%	60,000	65,000	100,000	13%	13%	86
Over 1" to 2" Dia.	15,000	30,000	50,000	60 ^R b	70 ^R b	90 ^R b	80%	75%	45%	55,000	59,000	100,000	14%	13%	9%
Over 2" to 3"	15,000	25,000	50,000	55 ^R b	65 ^R b	90 ^R b	80%	75%	45%	50,000	55,000	95,000	15%	13%	%6
THICKNESS	SQUARE	E, RECTAN	SQUARE, RECTANGULAR AND HEXAGONAL BAR STOCK	D HEXAC	ONAL BAF	R STOCK									
Up to 1"	20,000	35,000	50,000	55 ^R b	70 ^R b	$90^{R}b$	80%	75%	45%	60,000	65,000	100,000	13%	13%	* 6
Over 1"	15,000	25,000	50,000	50 ^R b	65Rb	90 ^R b	80%	75%	45%	50,000	55,000	100,000	14%	13%	% 6
THICKNESS	FORGINGS	cs													
Up to 1"	20,000	22,000*	50,000	55 ^R b	65 ^R b	$90^{R}b$	80%	75%	45%	45,000	55,000	94,000	12%	13%	9%6
Over 1" to 2"	15,000	21,000*	50,000	50 ^R b	65 ^R b	$90^{R}b$	80%	75%	45%	40,000	55,000	94,000	13%	13%	% 6
Over 2"	15,000	20,000	50,000	50 ^R b	65 ^R b	90 ^R b	80%	75%	45%	40,000	55,000	94,000	13%	13%	%6
	CASTINGS	cs													
ALL		20,000	45,000		55 ^R b	90 ^R b		70%	45%		45,000	85,000		12%	5%
GROUP A COPPERBASE ALLOYS		PROPORTIONAL LIMIT TENSION P.S.I.	NL LIMIT P.S.I.	HAR	HARDNESS ROCKWELL	CKWELL	CONDC	CONDUCTIVITY % LA.C.S.	6 I.A.C.S.	ULTIN	ULTIMATE TENSILE STRENGTH P.S.I.	SILE S.L.	ELOI	ELONGATION % IN 2" OR	1
CLASS 4 Alloys					1								4 DI	4 DIAMETERS	
Cast		60,000	0		33 ^R C			18%(Average)			000'06			0.5%	
Wrought		85,000	0		3 3RC			20%(Average)			140,000			0.5%	
CLASS 5 Allovs															
Cast		12,000	0		65 ^R b			%01			65,000			10%	
		to 16,000	0		10 85Rb			to 15%			75,000			5 E	
GROUP B REFRACTORY METALS	S									-	Ultimate Compression Strength PSI				
CLASS 10— Rods, Bars and Inserts	y 2				72 ^R b			35%			000,3€1				
CLASS 11- Rods, Bars and Inserts	y <u>y</u>				94Rb			28%			160,000				
CLASS 12— Rods, Bars and Inserts	yn yn				9eRb			27%			170,000				
CLASS 13- Rods, Burs and Inserts	n 12				69Ra			30%			200,000				
CLASS 14- Rods, Bars and Inserts	9 S			•Hot-Work	85Rb •Hot.Worked and Heat Treated –	Treated -	t Co	30% t Cold Worked			ł				

ALLOY PRODUCT TOLERANCES

SCS

Metal Thickness	.020	.030	.035	.040	.050	.060	.078	.093	.125
GCAP	244	254	254	254	255	255	266	266	266
Pressure	300	400	500	650	750	800	1000	1200	1400
Squeeze cycle	25	25	25	25	30	30	30	35	35
Up-Slope cycle					4	4	4	4	5
Upslope					2.0	2.0	2.0	2.0	2.0
Kiloamps					to S.C.*				
Weld cycle	6	8	9	10	7	8	10	12	10
Kiloamps	8.5	9.0	9.5	10.0	10.5	11.0	11.5	12.5	13.5
Cool cycle					1	1	1	1	1
Weld cycle					7	8	10	12	10
Kiloamps					10.5	11.0	11.5	12.5	13.5
Cool cycle									1
Weld cycle									10
Kiloamps									13.5
Hold cycle	3	4	4	5	5	10	10	15	20

GCAP® ELECTRODE WELD SCHEDULE FOR GALVANIZED STEEL

* S.C. – Starting Weld Current

GCAP® LINEAR STEPPER

Total Weld Count	500	1,000	3,000	5,000	7,500	10,000	12,000
Total Amps Boost	600	1000	3000	5000	6800	8400	9200
Amps Boost Per Weld	1.20		.88			.60	

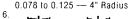
The above schedules and stepper is only meant to be a guide and will require adjustments to fit the application.

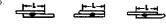
APPLICATION DATA SHEET

Thick- ness of Thinnest Outside Piece (Inches)	Electrod Flat Face	e Diameters a	Adius Face	Recommended Minimum Standard Electrode Size	Weld Force (Lbs.)	Weld Time (Cycles) (60 Cycles per Sec.)	Hold Time (Cycles) Min.	Welding Current (Amps.) (Approx.)	Weld Shear Strength (For Steels Having Ultimate Tensile Strength of 90,000 psi and below) Minimum Strength (Lbs/Weld)	Diameter of Fused Zone (Approx.)	Minimum Weld Spacing	Minimum Contacting Overlap L L (inches)
0.010 0.021 0.031 0.040 0.050	0.125 0.187 0.187 0.250 0.250	1/2 1/2 1/2 5/8	2 2 2 3 3	4RW 1MT 4RW 1MT 4RW 1MT 5RW 2MT 5RW 2MT	160 244 326 412 554	4 6 8 10 14	5 8 10 12 16	4,000 6,500 8,000 8,800 9,600	130 300 530 812 1,195	0.113 0.139 0.161 0.181 0.210	1/4 3/8 1/2 3/4 1/8	3/8 1/16 1/16 1/2 9/16
0.062 0.078 0.094 0.109 0.125	0.250 0.312 0.312 0.375 0.375	5/8 5/8 5/8 7/8 7/8	3 3 4 4 4	5RW 2MT 5RW 2MT 7RW 3MT 7RW 3MT 7RW 3MT 7RW 3MT	670 903 1,160 1,440 1,760	45	20 30 35 40 45	10,600 11,800 13,000 14,200 15,600	1,717 2,365 3,054 3,672 4,300	0.231 0.268 0.304 0.338 0.375	1 1½ 1¼ 1¼ 1∮⁄16 1½	5/8 17/16 3/4 13/16 7/8
0.156 0.187 0.250	0.500 0.625 0.750	¹ /8 1 11/4	6 6	Male or Female Threaded Male or Female Threaded Male or Female	2,500 3,340		50 55	18,000 20,500	6,500 9,000	0.446 0.516	1¾ 2	1 1½
0.200	0.700	174	0	Threaded	5,560	230	60	26,000	18,000	0.660	4	1½

SPOT WELDING DATA OPTIMUM CONDITIONS SCHEDULES FOR SPOT WELDING LOW CARBON STEEL-SAE 1010

PERMISSIBLE SCHEDULE VARIATIONS FOR SPOT WELDING LOW CARBON STEEL


Low Carbon Steel Spot Welding Data Chart-Single Impulse Welding


		/MON TO F SPOT N) ALL CLAS WELDS	SES				-UP FOR BEST ASS A WELDS					P FOR MEDIUM ASS B WELDS					P FOR GOOD SS C WELDS	
Thick- ness of Each of the Two Work Pieces Inches	Diam. 8	A Shape d Shape d -D Max. d Inches	Min. Weld Spacing (Note 4) Inches	Min. Con- tacting Overlap (Note 6) Inches	Weld Time (Note 7) Cycles	Elec- trode Force Pounds	Weld- ing Cur- rent Amps.	Diam. of Fused Zone	Average Tensile Shear Strength ±14% Pounds	Weld Time (Note 7) Cycles	Elec- trode Force Pounds	Weld- ing Cur- rent Amps.	Diam. of Fused Zone	Average Tensile Shear Strength ±17% Pounds	Weld Time (Note 7) Cycles	Elec- trode Force Pounds	Weld- ing Current Amps.	Diam. of Fused Zone	Average Tensile Shear Strength ±20% Pounds
.010 .021 .031 .040 .050	1/2 1/2 1/2 5/8 5/8	1/8 3/16 3/16 1/4 1/4	1/4 3/8 1/2 3/4 7/8	3%8 7/16 1/2 9/16	4 6 8 10 12	200 300 400 500 650	4000 6100 8000 9200 10300	.13 .17 .21 .23 .25	235 530 980 1305 1820	5 10 15 21 24	130 200 275 360 410	3700 5100 6300 7500 8000	.12 .16 .20 .22 .23	200 460 850 1230 1700	15 22 29 38 42	65 100 135 180 205	3000 3800 4700 5600 6100	.11 .14 .18 .21 .22	160 390 790 1180 1600
.062 .078 .094 .109 .125	5%8 5%8 5%8 7%8 7%8	1/4 5/16 5/16 3/8 3/8	1 1½ 1¼ 15⁄36 1½	5%8 11/16 3%4 13/16 5%8	14 21 25 29 30	800 1100 1300 1600 1800	11600 13300 14700 16100 17500	.27 .31 .34 .37 .40	2350 3225 4100 5300 6900	29 36 44 50 60	500 650 790 960 1140	9000 10400 11400 12200 12900	.26 .30 .33 .36 .39	2150 3025 3900 5050 6500	48 58 66 72 78	250 325 390 480 570	6800 7900 8800 9500 10000	.25 .28 .31 .35 .37	2050 2900 3750 4850 6150

NOTES:

- Low Carbon Steel as hot rolled, pickled, and slightly oiled with an ultimate strength of 42,000 to 45,000 PSI Similar to SAE 1005—SAE 1010.
 Electrode Material is Class II.
 Surface of steel is lightly oiled but free from grease scale of dirt
- Schole of a state of jacent welds.

5.	Radius Face electrodes may be used:	
	0.010 to 0.031 - 2" Radius	
	0.031 to 0.078 — 3" Radius	
	0.070 · 0.105 · · · · · ·	

7. Weld time is indicated in cycles of 60 cycle frequency.

Tensile shear strength values are based on rec-ommended test sample sizes:

ommonaca toot	oumpro oizoo.		
Direction of Force	Thickness	Width	Length
	.000" to .029"	×*	3.
	.030" to .058"	1"	4'
←────	.059" to .115"	11/2*	5"
	.116" to .190"	2*	6"

Tolerance for machining of electrode diameter "d" is ±.015" of specified dimension.
 Electrode force does not provide for force to press ill-fitting parts together.

Thickness				DIAMETERS tion Diameter)					Diameter of Fused Zone	Minimum Shear Strength (Single Projection Only) (For Steels	Minimum Contacting Overlap
Thinnest Outside Piece Inches	Diameter of Projection Dp Inches	Height of Projection H Inches	Minimum d Inches	Minimum D Inches	Electrode Force Pounds	Weld Time (Cycles) 60 Cycles per Sec.	Hold Time (Cycles) Minimum	Welding Current Amperes (Approx.)	Dw 🖛	Having Strength of 100,000 psi and below) Pounds	L Inches
0.010 0.012 0.014 0.016 0.021	0.055 0.055 0.055 0.067 0.067	0.015 0.015 0.015 0.017 0.017	0.125 0.125 0.125 0.187 0.187	V2 V2 V2 V2 V2	50 80 100 115 150	3 3 4 6	3 3 3 4 6	2,800 3,100 3,400 3,600 4,000	0.112 0.112 0.112 0.112 0.112 0.140	150 200 250 285 380	1/8 1/8 1/8 5/32 5/32
0.025 0.031 0.034 0.044 0.050	0.081 0.094 0.094 0.119 0.119	0.020 0.022 0.022 0.028 0.028	0.187 0.187 0.187 0.250 0.250	1/2 1/2 1/2 5/8	200 300 350 480 580	6 8 10 13 16	8 8 10 14 16	4,500 5,100 5,400 6,500 7,100	0.140 0.169 0.169 0.169 0.225	525 740 900 1,080 1,500	3∕16 7∕32 7∕32 9∕32 9∕32
0.062 0.070 0.078 0.094 0.109	0.156 0.156 0.187 0.218 0.250	0.035 0.035 0.041 0.048 0.054	0.312 0.312 0.375 0.500 0.500	7/8 7/8 7/8 7/8 7/8	750 900 1,050 1,300 1,650	21 24 26 32 38	20 24 30 30 36	8,400 9,200 10,500 11,800 13,300	0.225 0.281 0.281 0.281 0.281 0.338	2,100 2,550 2,950 3,700 4,500	3/8 3/8 7/16 1/2 5/8
0.125 0.140 0.156 0.171 0.187	0.281 0.312 0.343 0.375 0.406	0.060 0.066 0.072 0.078 0.085	0.500 0.625 0.625 0.750 0.750	7% 1 1 1 1	1,800 2,300 2,800 3,300 3,800	45 60 80 105 125	40 45 50 50 50	15,000 15,700 17,250 18,600 20,000	0.338 0.437 0.500 0.562 0.562	5,200 6,000 7,500 8,500 10,000	11/16 3/4 13/16 7/8 15/16
0.203 0.250	0.437 0.531	0.091 0.110	0.875 1.000	1¼ 1¼	4,500 6,600	145 230	55 60	21,500 26,000	0.625 0.687	12,000 15,000	1 1¼

PROJECTION WELDING DATA

DESIGN AND WELDING DATA FOR PROJECTION WELDING LOW CARBON STEELS

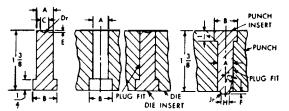
NOTES:

Type of Steel—Low Carbon SAE 1010—0.15% Carbon Maximum.
 Material free of scale, oxide, paint, dirt, etc.
 Size of projection determined by thickness of thinnest piece and projection should be on thickness of thinnest sheet for two thicknesses only.
 Data is based on thickness of thinnest sheet for two thicknesses only.

Maximum ratio between two thicknesses = 3 to 1. 5. See TABLE BELOW for design of punch and die for making projections. 6. Contacting overlap does not include any radii from forming.

From American Welding Society "Recommended Practices for Resistance Welding"

7. Projection should be located in center of overlap.


8. Tolerance for Projection Dimensions:

Toterance for Projection Dimensions.	Thickness	Thickness
Dimension	Up to 0.050"	Over 0.050"
Diameter "D"		±0.007"
Height "H"	±0.002"	±0.005"

9. Electrode Material:

Class III ELKONITE®TC-10 ELKONITE®10W3

PUNCH AND DIE DESIGN FOR FORMING WELDING PROJECTIONS

Mat Thickness	Pt. No.	A	В	±002 C	Dr	±001 E	±001 F	±001 H	Jr
0.010-0.015 0.016-0.021 .025 .031 .034	1 2 3 4 5	3/8 3/8 3/8 3/8 3/8 3/8	9/16 9/16 9/16 9/16 9/16	.055 .067 .081 .094 .094	.033 .042 .050 .062 .062	.015 .017 .020 .022 .022	.015 .020 .025 .030 .030	.035 .039 .044 .050 .050	.005 .005 .005 .005 .005
.044 .050 .062 .070 .078	6 7 8 9 10	3/8 3/8 3/8 3/8 3/8	9/16 9/16 9/16 9/16 9/16	.119 .119 .156 .156 .187	.078 .078 .105 .105 .128	.028 .028 .035 .035 .041	.035 .035 .043 .043 .055	.062 .062 .081 .081 .104	.005 .005 .005 .005 .010
Material: Tool St	eel.	Fini	sh all	over and	harde	n to 65-	68 Rock	well "C	C"scale

Mat Thickness	Pt. No.	A	В	±002 C	Dr	±001 E	±.001 F	±001 H	Jr
.094	11	1/2	11/16	.218	.148	.048	.065	.115	.010
.109	12	1/2	11/16	.250	.172	.054	.075	.137	1/64
.125	13	1/2	11/16	.281	.193	.060	.085	.154	1/64
.140	14	1/2	11/16	.312	.217	.066	.096	.172	1/64
.156	15	5/8	13/16	.343	.243	.072	.107	.191	1/64
.171	16	5/8	¹³ ⁄16	.375	.265	.078	.118	.210	1⁄64
.187	17	5/8	¹³ ⁄16	.406	.285	.085	.130	.229	1⁄64
.203	18	11/16	1⁄8	.437	.308	.091	.143	.240	.020
.250	19	13/16	1	.531	.375	.110	.175	.285	.025

Note: All working surfaces of die unit must be polished.

From American Welding Society "Recommended Practices for Resistance Welding"

THICKNESS "T" of THINNEST OUTSIDE PIECE (See Notes 1, 2, 3 and 4 Below) INCHES	AND S	E DIAMETER SHAPE Jole 5) OR R-3" d. IN., Max.	ELECTRODE FORCE LB.	WELD TIME CYCLES (60 Per Sec.)	WELL CUR (App AM Tensile Strength Below 150000 Psi	RENT rox.)	MINIMUM CONTACTING OVERLAP	MINIMUM WELD SPACING (See Note 6 Below) ¢ to ¢ to	DIAMETER OF FUSED ZONE IN. Approx.		M SHEAR STRI LB. ensile Strength 90000 Up to 150000 Psi	
0.006 0.008 0.010 0.012 0.014	³ /16 ³ /16 ³ /16 ¹ /4 ¹ /4	3/32 3/32 1/8 1/8 1/8	180 200 230 260 300	2 3 3 3 4	2000 2000 2000 2100 2500	2000 2000 2000 2000 2000 2200	3/16 3/16 3/16 1/4 1/4	3/16 3/16 3/16 1/4 1/4	0.045 0.055 0.065 0.076 0.082	60 100 150 185 240	70 130 170 210 250	85 145 210 250 320
0.016 0.018 0.021 0.025 0.031	1/4 1/4 1/4 3/8 3/8	1/8 1/8 1/32 5/32 3/16	330 380 400 520 650	4 4 5 5	3000 3500 4000 5000 6000	2500 2800 3200 4100 4800	1/4 1/4 5/16 3/8 3/8	\$/16 \$/16 \$/16 1/16 1/2	0.088 0.093 0.100 0.120 0.130	280 320 370 500 680	300 360 470 600 800	380 470 500 680 930
0.034 0.040 0.044 0.050 0.056	3/8 3/8 3/8 1/2 1/2	3/16 3/16 3/16 1/4 1/4 1/4	750 900 1000 1200 1350	6 6 8 8 10	7000 7800 8700 9500 10300	5500 6300 7000 7500 8300	7/16 7/16 7/16 1/2 9/16	9/16 5/8 11/16 3/4 7/8	0.150 0.160 0.180 0.190 0.210	800 1000 1200 1450 1700	920 1270 1450 1700 2000	1100 1400 1700 2000 2450
0.062 0.070 0.078 0.094 0.109 0.125	1/2 5/8 5/8 5/8 3/4 3/4	1/4 1/4 1⁄16 1∕16 3∕8 3∕8	1500 1700 1900 2400 2800 3300	10 12 14 16 18 20	11000 12300 14000 15700 17700 18000	9000 10000 11000 12700 14000 15500	5%8 5%8 11/16 3%4 13/16 7%8	1 11/8 11/4 13/8 11/2 2	0.220 0.250 0.275 0.285 0.290 0.300	1950 2400 2700 3550 4200 5000	2400 2800 3400 4200 5000 6000	2900 3550 4000 5300 6400 7600

SCHEDULE FOR SPOT WELDING STAINLESS STEEL

NOTES:

Types of Steel — 301, 302, 303, 304, 308, 309, 310, 316, 317, 321, 347 and 349
 Material should be free from scale, oxides, paint, grease and oil.
 Welding conditions determined by thickness of thinnest outside piece "T."
 Data for total thickness of pile-up not exceeding 4 "T". Maximum ratio between two thicknesses 3 to 1.
 Electrode Metacile, Clear II, or Electric table

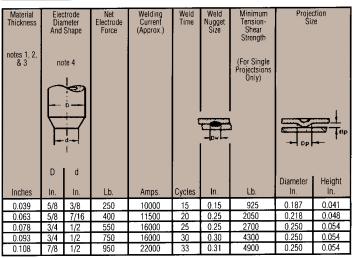
5. Electrode Material, Class II, Class III or ELKONITE® 10W3

6. Minimum weld spacing is that spacing for two pieces for which no special precautions need be taken to compensate for shunded current effect of adjacent welds. For three pieces increase spacing 30 per cent.

THICKNESS "T" OF THINNEST OUTSIDE PIECE (See Notes 1, 2, 3 and 4 Below) INCHES	ELECTRODE WIDTH AND SHAPE (See Note 5 Below) R+3* + W +	ELECTRODE FORCE LB.	ON TIME CYCLES (60 Per Sec.)	OFF T FOR MA) SPE (Pressure CYCL 2 "T	KIMUM ED e-Tight)	WELD	MUM SPEED <u>MINUTE</u> 4 "T"		ELDS INCH 4 "T"	WELDING CURRENT (Approx.) AMPS.	MINIMUM CONTACTING OVERLAP (See Note 6 Below)
0.006 0.008 0.010 0.012 0.014 0.016 0.018 0.021 0.025 0.031	3/16 3/16 3/16 3/4 3/4 3/4 3/4 3/8 3/8	300 350 400 450 500 600 650 700 850 1000	2 2 3 3 3 3 3 3 3 3 3 3 3 3 3	1 2 2 2 2 2 2 2 2 2 3 3 3	1 2 2 3 3 3 3 4 4	60 67 45 48 51 51 55 55 55 50 50	67 56 51 55 46 50 50 55 47 47	20 18 16 15 14 14 13 13 13 12 12	18 16 14 13 13 12 12 12 11 11 11	4000 4600 5000 5600 6200 6700 7300 7300 7900 9200 10600	1/4 1/4 1/16 1/16 1/16 1/16 1/16 1/16
0.040 0.050 0.062 0.070 0.078	3/8 1/2 1/2 5/8 5/6	1300 1600 1850 2150 2300 2550	3 4 4 4 4 5	4 4 5 5 6	5 5 7 7 7 7	47 45 40 44 40 36	45 44 41 41 41 38	11 10 10 9 9 9	10 9 8 8 8 8	13000 14200 15100 15900 16500 16600	1/2 5/8 5/8 11/16 11/16 3/4
0.094 0.109 0.125	5/8 3/4 3/4	2950 2950 3300	5 6	7 6	9 8	38 38	37 37	8 8	7 7	16800 17000	13/16 7/8

SCHEDULE FOR SEAM WELDING STAINLESS STEEL

NOTES:


1. Types of Steel—301, 302, 303, 304, 308, 309, 310, 316, 317, 321, 347 and 349 2. Material should be free from scale, oxides, paint, grease and oil. 3. Welding conditions determined by thickness of thinnest outside piece "T." 4. Data for total thickness of pile-up not exceeding 4 "T". Maximum ratio between two thicknesses 3 to 1.

From American Welding Society "Recommended Practices for Resistance Welding"

5. Electrode material, Class III

6.For large assemblies minimum contacting overlap indicated should be in-creased 30 per cent.

Material Thickness Electrode Diameter And Shape Welding Current (Approx.) Minimurr Tension-Shear Strength Weld Time Minimu linimum Weld Electrode Nugget Size Weld Spacing Contacting Overlap notes 1, 2, & 3 note 4 D 0c d Inches In Deg Amps. In Lb Inches Inches Lb Cycles 0.022 5/8 3/16 120 300 13000 8 0.15 550 5/8 5/8 400 13000 0.16 1000 5/8 5/8 0.030 5/8 3/16 120 10 0.036 120 500 13500 12 0.19 1180 3/4 5/8 1/4 5/8 1/4 650 14000 13 0.21 1400 3/4 5/8 0.039 120 5/8 120 725 14500 18 0.22 1700 7/8 11/16 0.052 1/4 5/8 850 15500 0.24 2500 1-1/8 1/4 120 22 3/4 0.063 3/4 1200 19000 24 0.28 3200 1-1/4 7/8 0.078 3/4 5/16 120 0.093 3/4 3/8 120 1400 21000 30 0.34 4200 1-1/2 7/8 3/8 120 1750 20000 37 0.40 5900 1-3/4 1-1/8 0.108 20000 42 0.48 7200 1-1/8 0.123 7/8 3/8 120 2000 2

Projection welding galvanized low-carbon steel

Seam welding galvanized low-carbon steel

Material Thickness		rrode dth Shape	Net Electrode Force	Welding Current (Approx.)	We Tir		Welding Speed	Welds Per Inch	Minimum Contacting Overlap
notes 1, 2, & 3	not	e 4							
	30°	$ \mathcal{V} $			Heat Time	Cool Time			
	T	i -			THIE	TIMIC			1
	w	E							
Inches	In.	In.	Lb.	Amps.	Cycles	Cycles	In./Min.	W/In.	Inches
0.015	3/8	1/4	900	15000	2	2	120	7.5	3/8
0.036	1/2	1/4	1100	18000	4	2	60	10.0	1/2
0.039	1/2	1/4	1200	19000	4	3	60	9.0	1/2
0.052	1/2	1/4	1350	20000	5	1	90	7.0	9/16
0.063	1/2	5/16	1500	19800	8	2	54	7.0	5/8
0.078	5/8	5/16	1850	23000	10	7	30	7.0	11/16

Spot welding galvanized low-carbon steel

NOTES:

- 1. Material must be free from dirt, grease, paint etc. prior to welding, but may have light oil.
- Two equal metal thicknesses of each gage.
 Commercial coating weight is 1.25 oz. per
- s, commercial coarrig weight is 1.25 02. per square foot.
- 4. Electrode Material-RWMA Group A, Class 2. Class II.
- 5. Water Cooling: 2 gallons per minute.

Projections should be larger in diameter for galvanized than for uncoated material.

NOTES:

- 1. Material must be free from dirt, grease, paint etc. prior to welding, but may have light oil.
- 2. Two equal metal thicknesses of each gage.
- 3. Commercial coating weight is 1.25 oz. per square foot.
- 4. Electrode Material-RWMA Group A, Class 2. Class II.
- 5. Pressure-tight joints require stripping the zinc coating prior to welding.
- 6. Nominal electrode diameter ranges between 8 to 10 inches.

From American Welding Society "Recommended Practices for Resistance Welding."

126

WELDING DATA CHART

CROSSED WIRE WELDING OF LOW CARBON STEEL WIRE

WIDE	C		AWN WIR	E		HOT DRA	WN WIRE	
WIRE DIA. IN.	WELD TIME CYCLES	WELD FORCE LBS.	WELD CURRENT AMPS.	Weld Strength LBS.	WELD TIME CYCLES	WELD FORCE LBS.	WELD CURRENT AMPS.	WELD STRENGTH LBS.
	15%	6 SET-DO	WN			15% SE	T-DOWN	
1/16	5	100	600	450	5	100	600	350
1/8	10	125	1,800	975	10	125	1,850	750
3/16	17	360	3,300	2,000	17	360	3,500	1,500
1/4	23	580	4,500	3,700	23	580	4,900	2,800
5/16	30	825	6,200	5,100	30	825	6,600	4,600
3/8	40	1,100	7,400	6,700	40	1,100	7,700	6,200
7/16	50	1,400	9,300	9,600	50	1,400	10,000	8,800
1/2	60	1,700	10,300	12,200	60	1,700	11,000	11,500
	30%	6 SET-DO	WN			30% SE	T-DOWN	
1/16	5	150	800	500	5	150	800	400
1/8	10	260	2,650	1,125	10	260	2,770	850
3/16	17	600	5,000	2,400	17	600	5,100	1,700
1/4	23	850	6,700	4,200	23	850	7,100	3,000
5/16	30	1,450	9,300	6,100	30	1,450	9,600	5,000
3/8	40	2,060	11,300	8,350	40	2,060	11,800	6,800
7/16	50	2,900	13,800	11,300	50	2,900	14,000	9,600
1/2	60	3,400	15,800	13,600	60	3,400	16,500	12,400
	50%	6 SET-DO	WN			50% SE	T-DOWN	
1/16	5	200	1,000	550	5	200	1,000	450
1/8	10	350	3,400	1,250	10	350	3,500	900
3/16	17	750	6,000	2,500	17	750	6,300	1,800
1/4	23	1,240	8,500	4,400	23	1,240	9,000	3,100
5/16	30	2,000	11,400	6,500	30	2,000	12,000	5,300
3/8	40	3,000	14,400	8,800	40	3,000	14,900	7,200
7/16	50	4,450	17,400	11,900	50	4,450	18,000	10,200
1/2	60	5,300	21,000	14,600	60	5,300	22,000	13,000

RECOMMENDED ELECTRODE MATERIALS

The process of resistance welding makes it possible to join most metals, similar or dissimilar. Bonds of adequate strength are obtain-able for an extremely wide range of applications. Selecting electrodes of the proper alloy is a most important consideration in producing good welds at the required speed. The chart below is a valuable guide to this selection.

The weldability of two materials as expressed in the following chart has been derived after careful laboratory study and field survey of many factors which influence the welding or resultant weld of the metals. The factors include:

- Thermal and electrical conductivity 1.
- 2. 3.
- Metallurgical properties Nature of resultant weld or alloy
- 4. Weld strength Relative accuracy in control of welding conditions necessary 5.

The weldability of metals as shown in the chart applies only when conventional spot welding methods are used on similar thicknesses of material. However, many metal combinations which are listed as having a "poor weldability" may be satisfactorily joined by using a special setup or procedure.

Electrode Materials For SPOT WELDING Similar and Dissimilar Metals

									1			T						T			T			······
	Tungsten Molyb- denum	Mag- nesium	Nickel Alloys	Nicke	Stainte Stee			Galva- nized Steel Zn, Plate	Terne Plate	Tin Plate	Scaly Steel	C. R. Steel	Pho pho Bron	r Sila			Cupro Nickel	Brass Yellow		ass Co ed	opper	Alu- minum Alloys	Alu- minum	C. P. Tita- nium
Commercially Pure Titanium																								A 0
Aluminum 2S-3S		C ¹ 5	E ² 5	E I ²	II H	1 H I 243 I 3			Louis and the second	D ³ 9 ⁴		E ³ 4		D ² 5	11 ² 5			D I		11 H 2 1	and in case of the local division of the loc	C 1	C I I 1	
Aluminum Alloys Duralumin 52S-17S-24S		C ¹ ₅	E 2		II H	 24 ³ ³	E '@ ଃ I ³ 9 ⁴	D I I ³ 9 ⁴		D ³ 9 ⁴		E ³ 4		11 D ² 5 1	11 ² 5			D (11 E	V 2	D 1		
Copper-Pure	H V 3	H I V ⁵	E II V			I H I 2₄3 V 3	I H '@ ₄ V ³,			H V 3₀4		H II V ³ 4	- and the second se	11 D 5 6 V	II D ⁵₀ V		D II V ⁵∈		IIE V	6 V				
Brass—Red 5-25% Zinc		H ⁵	D II V 6		II H ◎ V		I H '@ V	HI V ⁶	H 100	H V 6		H ³ 4	+	11 D * V	11 D 6 V		D II V	D 		 5 ₆				
BrassYellow 25-40% Zinc		E I	D II IV 6		H ◎ 		I E '@ IV 6		E '@	E IV 6		E II IV ³ 4		11 C			C II	C						
Cupro-Nickel		D I II ² 5					E 0		E [0]	E ²	H 100	E ³		C 1	C		B 1							
Nickel Silver		D ² 5					וובוימ		E 100	E 2		E						-						
Silicon Bronze		D ² 5		D	E		IE'a	E I	E '@	E	H '@	D 3		11 B	 1									
Phosphor Bronze Grades A, C, & D		E	D	D					E @	E	H '@	D ³		1										
C. R. Steel H. R. Steel—Clean	D ³		D 3		11 B 3 111	II B I			B 100		E /@	A]	B	Госк	INT	ERP	RET		N				
Scaly H. R. Steel	H @ ³ 7			H		0 D I 7 1 0 7	IDII 8 0 7	D 00 ⁶ 7	D 1@ 1@67	D 00 ⁶ 7	E '@		-			ELD- LITY		ECTRO						
Tin Plate	E II	E ⁵ 9	D 1		11 C 1		D @		D (0)]				ELEC	TROD		SPECIA						
Terne Plate	E @ 9	E I	D 1		II C		C @		C I 6		-				AG	NST		IFORM TION	A-					
Galvanized Steel Zinc Plate	E II	E '@⁵s	D @ 3		11 C		C 9 9	C '@ '@)	_								WELI				oncolo	Irallod	(mild)
Cadmium Plate	E	E	D		C 9	II C			-								:	steel h design	ias be	en ch as "e	iosen	and it ent." E—P	s weld oor	ability
Chrome Plate	D 8		D 8			B I		-										B' C(D	Goód	Good			ery Po npracti	
Stainless Steel 18-8 Type	D ² 5		DI			6		I	ELECT I- Class II- Class	: 1 : 11	3				60	FCI	د ا ۵	NFOF	MA.	τιον	ł			
Nickel Grade A	D			В	_			ľ	II– Class V–ELKC V–ELKC /I–ELKC	ONITE® DN® 100	M*				1. 2. 3.	Good May b Low v	weld be we veld s	l stren Ided u streng	gth. Inder th.	speci	ial co	ndition		-11
Nickel Alloys Monel Nichrome (High Res.)	D ² 5		B]					or TC ELKON ELKON	:-5 * 100 V	V may b				5. 6. 7.	Weldi Keep Good	elect prac	onditio rode c tice re	ns m clean comr	ust be to pre nends	e accu event s clea	ning st	contro g to th eel be	illed. e work. fore weld
Magnesium Alloys		D]	-				_	substit Electro second	uted. de mat	erials ir				8. 9.	Use o Coatii	ng m	at tip t ay dis:	o min solve	imize in oth	dista ier m	etals o	r aisco r burn	oloration. away.
Molybdenum Tungsten	D ² 5		-1																					

This Chart shows graphically the importance of Electrode maintenance. This is not only important from the quality of the weld, which is of first importance, also extra load added to the welding machine and equipment. Read the data on the chart, you can then draw your own conclusions.

YOU CAN'T AFFORD TO NEGLECT YOUR ELECTRODES !

Keep your Electrodes dressed for maximum production and quality welds.

A TIP DRESSER WILL PAY DIVIDENDS !

We can supply you with hand operated Tip Dressers or Pneumatic Power Driven Dressers. Design or type will depend on your production requirements.

PROPER 56% 125% 300% 525% 800% 400% TOO LARGE TOO LARGE **TOO LARGE TOO LARGE** TOO LARGE TOO SMALL NEW TIPS (A) (B) (C) (D) (E) (F) (G) (Statistical) 6.94 WMINNSS Approx 1/13th sq. in at Accres Approx. 1/201h sq. in Approv. 1/5th sq. in ____at 1/81 sq. in. at 1/91h sq. in at 1/3rd sq. 1/2 sq. at at 0 Ø 1/4" Dia. 3/16"Dia. 1/8" Dia. 1/2" Dia. 3/8" Dia. 3/8" Dia. 3/4" Dia. 88,500 22.100 39,300 61.350 2,460 9.823 15.337 amperes amperes amperes only amperes amperes amperes amperes would be required (†) 127,640 lbs. sq. in. 31,960 lbs. sq. in. 20,470 lbs. sq. in. 14,200 lbs. sq. in. 7,990 lbs. sq. in. 5,120 lbs. sq. in 3,500 lbs. sq. in. pressure (*) **RESULT: RESULT: RESULT: RESULT: RESULT: RESULT: RESULT:** Only 45% of the required pressure Only 16% of required current Only 11% of needed current Four times too much pressure, Correct pressure, current, tips. Only 60% of proper pressure, Only 25: of required current and pressure. No weld would current. Very Excellent weld. current. and current. and pressure. and pressure. Borderline weld Welds would he severe indentation This is the size This is a very This is an and spitting tip (new) for be made if tips serious condition absurd (though Lower strength. unacceptable. which the Last diameter If the current were left in and the only cure often seen) from high this condition condition that current density. pressure, time. size tolerated or time were is to dress the unless current increased with tips back to (B) only heats a spot and current CORRECTION: are adjusted. and pressure tips in this condition Cut pressure to 1/4 were set between condition a large weak weld the 1/4 and 5/16 Cut current size tips. would result. to 1/4

RESISTANCE WELDING

(†) Current density required for this gage to be 200,000 amps per sq. in. Setting is 9,900 amps for condition (B)

Reproduced by permission of McGraw-Hill Book Company, Inc.

^(*) Five inch diameter air cylinder A 80 lbs. air pressure-1570 lbs. on ram.

INDEX

100 Series (Non-Ejector) Water Cooled Electrode Holders	64
1100 Series Adjust-A-Pressure Water Cooled Low Inertia Electrode Holders	75
200 Series (Ejector) Water Cooled Electrode Holders	65
300 Series Premium (Ejector) Water Cooled Electrode Holders	
400 Series Offset (Non-Ejector) Water Cooled Electrode Holders	
500 Series Premium (Ejector) Water Cooled Offset Holders	
600 Series Universal Holder Components	
600 Series Universal Water Cooled Electrode Holders	
800 Series "Nu-Twist"® Adapters	71
900 Series Light Duty Water Cooled Universal Holders	77
Accessories	
Adapters	
Air-Cooled Cable Jumpers	
Alloy Product Tolerances	
Application Data Sheet	
Application Sheet for Typical Multiple Spot Welding Set Ups	76
Assemblies of Hydraulic "Nu-Twist"® Numbers 18-846, 18-847 and 18-836	74
Back-up Electrodes	60
Brass Alloys	
Bronze Alloys	60
Cable Selection Chart	
Cap Electrodes	
Chameleon/Max-life [™] Nut Welding Electrodes	55
Chameleon/Max-life [™] Stud Welding Electrodes	
Conversion Tables – Inches to Millimeters	
Copper Alloys for Resistance Welding	
Standard Stock Copper Base Alloys	2-3
Copper Alloys for Resistance Welding	
Standard Bar Stock Sizes	
O.F.H.C. 101 & Alloy C-110 Rounds & Plates	
Contactors	91-92
Controls	
Crank Electrodes	47
Data Sheet for Recommended Electrode Materials	
Data Sheet — Class II Chrome Copper (R.W.M.A. Alloy C18200)	6-9
Data Sheet — Class III Beryllium Copper (R.W.M.A. Alloy C17510)	10-13
Data Sheet - Class IV Beryllium Copper (R.W.M.A. Alloy C17200 - RC25-32)	14-16
Data Sheet - Class IV Beryllium Copper (R.W.M.A. Alloy C17200 - RC36-43)	17-19
Data Sheet — Copper Alloy No. C10100 O.F.H.C.	24-27
Data Sheet — Copper Alloy No. C11000	
Double Bend Electrodes	46
Double Bend Electrode Coding System	45
Dual Piston Cylinder	81
Forge Gauges	86
GCAP® Electrodes	
GCAP® Weld & Stepper Schedule	

INDEX

Heavy Duty Foot Switch	
Hydraulic Equalizing Adapters and Assemblies	73
Industrial Chillers	
Introduction to Resistance Welding	112-113
Laminated Shunts & Data Sheet	
Manifolds	
Multi-Spot Welder Electrode Adapters	79
Non-Piloting Nut Welding Electrodes	
Parts of a Typical Press Type Welding Machine	
Platen Mounted Electrode Holders	
Pneumatic Electrode Dressers with Cutters and Accessories	
Press Type Welders	
RA Type Spot Welder Specifications	
Refractory Based Metals	
Copper Tungsten Materials	
Rectangular Bars and Round Bars	
Resistance Welding Electrodes & Holders Do's & Don'ts	119
Resistance Welding Electrode Maintenance	
Rules For Making Good Welds	
Schedules for Spot Welding Carbon Steel-SAE 1010	
Seam Welding Wheels	
Self-Piloting Nut Welding Electrodes	
Setting Up The Welding Machine	116
Set-up Combinations (Holders, Adaptors, & Electrodes)	63
Shanks for Female Caps	
Shanks for Male Caps	40
Single Bend Electrodes	
Socket (or Button) and "Nu-Twist"® Electrodes	72
Spade and Gun Electrodes	
Special Machines & Tools	
Spot Welding Guns	
Straight Electrodes	
Stud & Nut Weld Electrodes	
Stud Welding Electrodes	
Taper Dimensions and Electrode Coding	
Technical Data for Dual Conductor Cables	
Terminals for Dual-Conductor Cables	
Terminals for Water Cooled Cable Jumpers (WCJ)	
Threaded Electrodes	61
Tip Dressing Blades & Chucks	
Transformers	
Tube Replacements	
Weld Heads	
Welding Data Chart	
Welding Sequences & Definitions	115

We acknowledge the following companies who permitted the use of their material in the preparation of this catalog: CMW Inc., CAL Manufacturing Company Inc., Roman Manufacturing Inc., Entron Controls, Inc., Weltronic/Technitron Corp., & Resistance Welder Manufacturers Association.