# Southern Copper and Supply 800-289-2728 GCAP<sup>®</sup> WELD AND STEPPER SCHEDULE



Phone: 866-634-8884

Fax: 866-239-6995

Email: cmw@cmwinc.com

| Metal Thickness | .020 | .030 | .035 | .040 | .050     | .060     | .078     | .093     | .125     |
|-----------------|------|------|------|------|----------|----------|----------|----------|----------|
| G-CAP           | 244  | 254  | 254  | 254  | 255      | 255      | 266      | 266      | 266      |
| Pressure        | 300  | 400  | 500  | 650  | 750      | 800      | 1000     | 1200     | 1400     |
| Squeeze cycle   | 25   | 25   | 25   | 25   | 30       | 30       | 30       | 35       | 35       |
| Up-Slope cycle  |      |      |      |      | 4        | 4        | 4        | 4        | 5        |
| Upslope         |      |      |      |      | 2.0      | 2.0      | 2.0      | 2.0      | 2.0      |
| Kiloamps        |      |      |      |      | to S.C.* |
| Weld cycle      | 6    | 8    | 9    | 10   | 7        | 8        | 10       | 12       | 10       |
| Kiloamps        | 8.5  | 9.0  | 9.5  | 10.0 | 10.5     | 11.0     | 11.5     | 12.5     | 13.5     |
| Cool cycle      |      |      |      |      | 1        | 1        | 1        | 1        | 1        |
| Weld cycle      |      |      |      |      | 7        | 8        | 10       | 12       | 10       |
| Kiloamps        |      |      |      |      | 10.5     | 11.0     | 11.5     | 12.5     | 13.5     |
| Cool cycle      |      |      |      |      |          |          |          |          | 1        |
| Weld cycle      |      |      |      |      |          |          |          |          | 10       |
| Kiloamps        |      |      |      |      |          |          |          |          | 13.5     |
| Hold cycle      | 3    | 4    | 4    | 5    | 5        | 10       | 10       | 15       | 20       |

## GCAP® ELECTRODE WELD SCHEDULE FOR GALVANIZED STEEL

\* S.C. – Starting Weld Current

## **GCAP<sup>®</sup> LINEAR STEPPER**

| Total Weld Count | 500  | 1,000 | 3,000 | 5,000 | 7,500 | 10,000 | 12,000 |
|------------------|------|-------|-------|-------|-------|--------|--------|
| Total Amps Boost | 600  | 1000  | 3000  | 5000  | 6800  | 8400   | 9200   |
| Amps Boost Per   | 1.20 |       | .88   |       |       | .60    |        |
| Weld             |      |       |       |       |       |        |        |

The above schedules and stepper is only meant to be a guide and will require adjustments to fit the application.



Phone: 866-634-8884

Fax: 866-239-6995

Email: cmw@cmwinc.com

### SPOT WELDING DATA **OPTIMUM CONDITIONS**

SCHEDULES FOR SPOT WELDING LOW CARBON STEEL-SAE 1010

|                                           | Electro                                   | de Diameter                     | s and Shape*          |                                                          |                                       |                                 |                            |                                                |                                                                                     | Diameter                                  | Minimum Weld                           | Minimum                             |
|-------------------------------------------|-------------------------------------------|---------------------------------|-----------------------|----------------------------------------------------------|---------------------------------------|---------------------------------|----------------------------|------------------------------------------------|-------------------------------------------------------------------------------------|-------------------------------------------|----------------------------------------|-------------------------------------|
|                                           | Flat Face                                 | R                               | adius Face            |                                                          |                                       |                                 |                            |                                                |                                                                                     | (Approx.)                                 | Spacing                                | Overlap                             |
| Thick-<br>ness<br>of<br>Thinnest          |                                           |                                 |                       |                                                          |                                       | Weld<br>Time<br>(Cycles)<br>(60 | Hold                       | Welding                                        | Weld Shear Strength<br>(For Steels Having<br>Ultimate Tensile<br>Strength of 90,000 |                                           |                                        |                                     |
| Outside<br>Piece<br>(Inches)              | Maximum d<br>(Inches)                     | Min. D<br>(Inches)              | Radius R<br>(Inches)  | Recommended<br>Minimum Standard<br>Electrode Size        | Weld<br>Force<br>(Lbs.)               | Cycles<br>per<br>Sec.)          | Time<br>(Cycles)<br>Min.   | Current<br>(Amps.)<br>(Approx.)                | psi and below)<br>Minimum Strength<br>(Lbs/Weld)                                    | Dw<br>(Inches)                            | S<br>(Inches)                          | L<br>(Inches)                       |
| 0.010<br>0.021<br>0.031<br>0.040<br>0.050 | 0.125<br>0.187<br>0.187<br>0.250<br>0.250 | 1/2<br>1/2<br>1/2<br>5/8<br>5/8 | 2<br>2<br>3<br>3      | 4RW 1MT<br>4RW 1MT<br>4RW 1MT<br>5RW 2MT<br>5RW 2MT      | 160<br>244<br>326<br>412<br>554       | 4<br>6<br>8<br>10<br>14         | 5<br>8<br>10<br>12<br>16   | 4,000<br>6,500<br>8,000<br>8,800<br>9,600      | 130<br>300<br>530<br>812<br>1,195                                                   | 0.113<br>0.139<br>0.161<br>0.181<br>0.210 | 1/4<br>3/8<br>1/2<br>3/4<br>7/8        | 3/8<br>7/16<br>7/16<br>1/2<br>9/16  |
| 0.062<br>0.078<br>0.094<br>0.109<br>0.125 | 0.250<br>0.312<br>0.312<br>0.375<br>0.375 | 5/8<br>5/8<br>5/8<br>7/8<br>7/8 | 3<br>3<br>4<br>4<br>4 | 5RW 2MT<br>5RW 2MT<br>7RW 3MT<br>7RW 3MT<br>7RW 3MT      | 670<br>903<br>1,160<br>1,440<br>1,760 | 18<br>25<br>34<br>45<br>60      | 20<br>30<br>35<br>40<br>45 | 10,600<br>11,800<br>13,000<br>14,200<br>15,600 | 1,717<br>2,365<br>3,054<br>3,672<br>4,300                                           | 0.231<br>0.268<br>0.304<br>0.338<br>0.375 | 1<br>1-1/8<br>1-1/4<br>1-5/16<br>1-1/2 | 5/8<br>11/16<br>3/4<br>13/16<br>7/8 |
| 0.156<br>0.187                            | 0.500<br>0.625                            | 7/8<br>1                        | 6<br>6                | Male or Female<br>Threaded<br>Male or Female<br>Threaded | 2,500<br>3,340                        | 93<br>130                       | 50<br>55                   | 18,000 20,500                                  | 6,500<br>9,000                                                                      | 0.446<br>0.516                            | 1-3/4<br>2                             | 1                                   |
| 0.250                                     | 0.750                                     | 1-1/4                           | 6                     | Male or Female<br>Threaded                               | 5,560                                 | 230                             | 60                         | 26,000                                         | 18,000                                                                              | 0.660                                     | 4                                      | 1-1/2                               |

## PERMISSIBLE SCHEDULE VARIATIONS FOR SPOT WELDING LOW CARBON STEEL

Low Carbon Steel Spot Welding Data Chart-Single Impulse Welding

| DA                                                                     | FA COM<br>OF                               | MON TO<br>SPOT                    | ) ALL CL/<br>WELDS                            | ASSES                                                    | WELDING SET-UP FOR BEST<br>QUALITY—CLASS A WELDS |                                     |                                           |                                 | WELDING SET-UP FOR MEDIUM<br>QUALITY—CLASS B WELDS        |                                    |                                   |                                          | М                               | WELDING SET-UP FOR GOOD<br>QUALITY—CLASS C WELDS          |                                    |                                   |                                       |                                 |                                                           |
|------------------------------------------------------------------------|--------------------------------------------|-----------------------------------|-----------------------------------------------|----------------------------------------------------------|--------------------------------------------------|-------------------------------------|-------------------------------------------|---------------------------------|-----------------------------------------------------------|------------------------------------|-----------------------------------|------------------------------------------|---------------------------------|-----------------------------------------------------------|------------------------------------|-----------------------------------|---------------------------------------|---------------------------------|-----------------------------------------------------------|
| Thick-<br>ness<br>of Each<br>of the<br>Two<br>Work<br>Pieces<br>Inches | Elec<br>Diam. 8<br>30°<br>Min. D<br>Inches | trode<br>& Shape                  | Min.<br>Weld<br>Spacing<br>(Note 4)<br>Inches | Min.<br>Con-<br>tacting<br>Overlap<br>(Note 6)<br>Inches | Weld<br>Time<br>(Note 7)<br>Cycles               | Elec-<br>trode<br>Force<br>Pounds   | Weld-<br>ing<br>Cur-<br>rent<br>Amps.     | Diam.<br>of<br>Fused<br>Zone    | Average<br>Tensile<br>Shear<br>Strength<br>±14%<br>Pounds | Weld<br>Time<br>(Note 7)<br>Cycles | Elec-<br>trode<br>Force<br>Pounds | Weld-<br>ing<br>Cur-<br>rent<br>Amps.    | Diam.<br>of<br>Fused<br>Zone    | Average<br>Tensile<br>Shear<br>Strength<br>±17%<br>Pounds | Weld<br>Time<br>(Note 7)<br>Cycles | Elec-<br>trode<br>Force<br>Pounds | Weld-<br>ing<br>Current<br>Amps.      | Diam.<br>of<br>Fused<br>Zone    | Average<br>Tensile<br>Shear<br>Strength<br>±20%<br>Pounds |
| .010<br>.021<br>.031<br>.040<br>.050                                   | 1/2<br>1/2<br>1/2<br>5/8<br>5/8            | 1/8<br>3/16<br>3/16<br>1/4<br>1/4 | 1/4<br>3/8<br>1/2<br>3/4<br>7/8               | 3/8<br>7/16<br>7/16<br>1/2<br>9/16                       | 4<br>6<br>8<br>10<br>12                          | 200<br>300<br>400<br>500<br>650     | 4000<br>6100<br>8000<br>9200<br>10300     | .13<br>.17<br>.21<br>.23<br>.25 | 235<br>530<br>980<br>1305<br>1820                         | 5<br>10<br>15<br>21<br>24          | 130<br>200<br>275<br>360<br>410   | 3700<br>5100<br>6300<br>7500<br>8000     | .12<br>.16<br>.20<br>.22<br>.23 | 200<br>460<br>850<br>1230<br>1700                         | 15<br>22<br>29<br>38<br>42         | 65<br>100<br>135<br>180<br>205    | 3000<br>3800<br>4700<br>5600<br>6100  | .11<br>.14<br>.18<br>.21<br>.22 | 160<br>390<br>790<br>1180<br>1600                         |
| .062<br>.078<br>.094<br>.109<br>.125                                   | 5/8<br>5/8<br>5/8<br>7/8<br>7/8<br>7/8     | 1/4<br>5/16<br>5/16<br>3/8<br>3/8 | 1<br>1-1/8<br>1-1/4<br>1-5/16<br>1-1/2        | 5/8<br>11/16<br>3/4<br>13/16<br>7/8                      | 14<br>21<br>25<br>29<br>30                       | 800<br>1100<br>1300<br>1600<br>1800 | 11600<br>13300<br>14700<br>16100<br>17500 | .27<br>.31<br>.34<br>.37<br>.40 | 2350<br>3225<br>4100<br>5300<br>6900                      | 29<br>36<br>44<br>50<br>60         | 500<br>650<br>790<br>960<br>1140  | 9000<br>10400<br>11400<br>12200<br>12900 | .26<br>.30<br>.33<br>.36<br>.39 | 2150<br>3025<br>3900<br>5050<br>6500                      | 48<br>58<br>66<br>72<br>78         | 250<br>325<br>390<br>480<br>570   | 6800<br>7900<br>8800<br>9500<br>10000 | .25<br>.28<br>.31<br>.35<br>.37 | 2050<br>2900<br>3750<br>4850<br>6150                      |

#### NOTES:

- Low Carbon Steel as hot rolled, pickled, and slightly oiled with an ultimate strength of 42,000 to 45,000 PSI Similar to SAE 1005— SAE 1010. 2. Electrode Material is CMW<sup>®</sup> 3.
- Surface of steel is lightly oiled but free from grease, scale or dirt.
   Minimum weld spacing is that distance for which no increase in welding current is necessary to compensate for the shunted current effect in adjacent welds.





7. Weld time is indicated in cycles of 60 cycle frequency.

- 1

8. Tensile shear strength values are based on recommended test sample sizes:

| Direction of Force | Thickness      | Width  | Length |
|--------------------|----------------|--------|--------|
|                    | .000" to .029" | 5/8"   | 3"     |
|                    | .030" to .058" | 1"     | 4"     |
|                    | .059" to .115" | 1-1/2" | 5"     |
| ←└───→             | .116" to .190" | 2"     | 6"     |

- 9. Tolerance for machining of electrode diameter "d" is
- ±.015" of specified dimension. Electrode force does not provide for force to press ill-fitting parts together. 10.



Phone: 866-634-8884

Fax: 866-239-6995

Email: cmw@cmwinc.com

| i |                                           |                                           |                                           |                                                    |                                        |                                           |                              |                            |                                                |                                                    |                                                                                                           |                                                                        |
|---|-------------------------------------------|-------------------------------------------|-------------------------------------------|----------------------------------------------------|----------------------------------------|-------------------------------------------|------------------------------|----------------------------|------------------------------------------------|----------------------------------------------------|-----------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|
|   | Thickness<br>of<br>Thinnest<br>Outside    | PROJECTI                                  | Dp<br>Dp<br>Height of<br>Projection       |                                                    | DIAMETERS<br>tion Diameter)            | Flactroda                                 | Weld Time                    | Hold Time                  | Welding                                        | Diameter of<br>Fused Zone                          | Minimum Shear<br>Strength<br>(Single Projection<br>Only)<br>(For Steels<br>Having Strength<br>of 1000 psi | Minimum<br>Contacting<br>Overlap<br>+  L  +-<br>+  S ++ = 2 DP<br>MIN. |
|   | Piece                                     | Dp<br>Inches                              | H                                         | Minimum d<br>Inches                                | Minimum D<br>Inches                    | Force<br>Pounds                           | 60 Cycles<br>per Sec.        | (Cycles)<br>Minimum        | Amperes<br>(Approx.)                           | Dw<br>Inches                                       | and below)<br>Pounds                                                                                      | L Inches                                                               |
|   | 0.010<br>0.012<br>0.014<br>0.016<br>0.021 | 0.055<br>0.055<br>0.055<br>0.067<br>0.067 | 0.015<br>0.015<br>0.015<br>0.017<br>0.017 | 0.125<br>0.125<br>0.125<br>0.125<br>0.187<br>0.187 | 1/2<br>1/2<br>1/2<br>1/2<br>1/2        | 50<br>80<br>100<br>115<br>150             | 3<br>3<br>3<br>4<br>6        | 3<br>3<br>4<br>6           | 2,800<br>3,100<br>3,400<br>3,600<br>4,000      | 0.112<br>0.112<br>0.112<br>0.112<br>0.112<br>0.140 | 150<br>200<br>250<br>285<br>380                                                                           | 1/8<br>1/8<br>1/8<br>5/32<br>5/32                                      |
|   | 0.025<br>0.031<br>0.034<br>0.044<br>0.050 | 0.081<br>0.094<br>0.094<br>0.119<br>0.119 | 0.020<br>0.022<br>0.022<br>0.028<br>0.028 | 0.187<br>0.187<br>0.187<br>0.250<br>0.250          | 1/2<br>1/2<br>1/2<br>5/8<br>5/8        | 200<br>300<br>350<br>480<br>580           | 6<br>8<br>10<br>13<br>16     | 8<br>8<br>10<br>14<br>16   | 4,500<br>5,100<br>5,400<br>6,500<br>7,100      | 0.140<br>0.169<br>0.169<br>0.169<br>0.225          | 525<br>740<br>900<br>1,080<br>1,500                                                                       | 3/16<br>7/32<br>7/32<br>9/32<br>9/32                                   |
|   | 0.062<br>0.070<br>0.078<br>0.094<br>0.109 | 0.156<br>0.156<br>0.187<br>0.218<br>0.250 | 0.035<br>0.035<br>0.041<br>0.048<br>0.054 | 0.312<br>0.312<br>0.375<br>0.500<br>0.500          | 7/8<br>7/8<br>7/8<br>7/8<br>7/8<br>7/8 | 750<br>900<br>1,050<br>1,300<br>1,650     | 21<br>24<br>26<br>32<br>38   | 20<br>24<br>30<br>30<br>36 | 8,400<br>9,200<br>10,500<br>11,800<br>13,300   | 0.225<br>0.281<br>0.281<br>0.281<br>0.281<br>0.338 | 2,100<br>2,550<br>2,950<br>3,700<br>4,500                                                                 | 3/8<br>3/8<br>7/16<br>1/2<br>5/8                                       |
|   | 0.125<br>0.140<br>0.156<br>0.171<br>0.187 | 0.281<br>0.312<br>0.343<br>0.375<br>0.406 | 0.060<br>0.066<br>0.072<br>0.078<br>0.085 | 0.500<br>0.625<br>0.625<br>0.750<br>0.750          | 7/8<br>1<br>1<br>1<br>1                | 1,800<br>2,300<br>2,800<br>3,300<br>3,800 | 45<br>60<br>80<br>105<br>125 | 40<br>45<br>50<br>50<br>50 | 15,000<br>15,700<br>17,250<br>18,600<br>20,000 | 0.338<br>0.437<br>0.500<br>0.562<br>0.562          | 5,200<br>6,000<br>7,500<br>8,500<br>10,000                                                                | 11/16<br>3/4<br>13/16<br>7/8<br>15/16                                  |
|   | 0.203                                     | 0.437                                     | 0.091                                     | 0.875                                              | 1-1/4<br>1-1/4                         | 4,500                                     | 145<br>230                   | 55<br>60                   | 21,500                                         | 0.625                                              | 12,000                                                                                                    | 1                                                                      |

## **PROJECTION WELDING DATA** DESIGN AND WELDING DATA FOR PROJECTION WELDING LOW CARBON STEELS

#### NOTES:

Type of Steel—Low Carbon SAE 1010—0.15% Carbon Maximum.
 Material free of scale, oxide, paint, dirt, etc.
 Size of projection determined by thickness of thinnest piece and projection

should be on thickest piece. 4. Data is based on thickness of thinnest sheet for two thicknesses only.

Maximum ratio between two thicknesses = 3 to 1. 5. See TABLE BELOW for design of punch and die for making projections.

В

9/16

9/16 9/16

9/16

A No

3/8 3/8 3/8

3/8 3/8 9/16 9/16

3/8 3/8 9/16 9/16

1

6 7

8 3/8 9/16

9 10 3/8 3/8 9/16

6. Contacting overlap does not include any radii from forming 7. Projection should be located in center of overlap.

8. Tolerance for Projection Dimensions:

From American Welding Society "Recommended Practices for Resistance Welding"

Dimension

ELKONITE®TC-10

### PUNCH AND DIE DESIGN FOR FORMING WELDING PROJECTIONS





±.00

Е

.015 .017

.022 .022

.028 .028

.035

.035

Dr

.033

.042

.050 .020

.078 .078 .105

.128 041

С

.055 .067 .081

.094 .094 .062

.119 .119

156

.156 .187

- 00

F

.015

.020

.025

.030

.035 .035 .062 .062 .005 .005

.043 .043 .055

001

Н

.035

.039

.044 .005

.050 .005

.081 .081 .104

Jr

.005 .005

.005

.005

| Plug Fit / |            | Die |
|------------|------------|-----|
|            | Die Insert |     |

7

Diameter "D"

9. Electrode Material:

Height "H"

CMW<sup>®</sup>100



Thickness

Up to 0.050"

+0.003"

±0.002"

ELKONITE®10W3

Thickness

Over 0.050"

±0.007" ±0.005"

| Mat<br>Thickness | Pt.<br>No. | А     | В     | ±.002<br>C | Dr   | ±.001<br>E | ±.001<br>F | ±.001<br>H | Jr   |
|------------------|------------|-------|-------|------------|------|------------|------------|------------|------|
| .094             | 11         | 1/2   | 11/16 | .218       | .148 | .048       | .065       | .115       | .010 |
| .109             | 12         | 1/2   | 11/16 | .250       | .172 | .054       | .075       | .137       | 1/64 |
| .125             | 13         | 1/2   | 11/16 | .281       | .193 | .060       | .085       | .154       | 1/64 |
| .140             | 14         | 1/2   | 11/16 | .312       | .217 | .066       | .096       | .172       | 1/64 |
| .156             | 15         | 5/8   | 13/16 | .343       | .243 | .072       | .107       | .191       | 1/64 |
| .171             | 16         | 5/8   | 13/16 | .375       | .265 | .078       | .118       | .210       | 1/64 |
| .187             | 17         | 5/8   | 13/16 | .406       | .285 | .085       | .130       | .229       | 1/64 |
| .203             | 18         | 11/16 | 7/8   | .437       | .308 | .091       | .143       | .240       | .020 |
| .250             | 19         | 13/16 | 1     | .531       | .375 | .110       | .175       | .285       | .025 |

Material: Tool Steel. Finish all over and harden to 65-68 Rockwell "C" scale. Note: All working surfaces of die unit must be polished.

From American Welding Society "Recommended Practices for Resistance Welding"

Thickness

0.010-0.015

0.016-0.021

.031 .034

.044 .050

.062

.070



## Phone: 866-634-8884

Fax: 866-239-6995

Email: cmw@cmwinc.com

## SCHEDULE FOR SPOT WELDING STAINLESS STEEL

| THICKNESS<br>"T" of<br>THINNEST<br>OUTSIDE<br>PIECE | ELECTR<br>AND S<br>(See 1       | ODE DIAMETER<br>SHAPE<br>Note 5)<br>OR |                                 | WELD                               | WEL<br>CUR<br>(App<br>AM                   | DING<br>RENT<br>prox.)<br>IPS                   |                                  | MINIMUM<br>WELD<br>SPACING<br>(See Note<br>6 Below) | DIAMETER<br>OF<br>FUSED<br>ZONE           | MINIMUN<br>Ultimate Te          | I SHEAR ST<br>LB.               | RENGTH<br>h of Metal            |
|-----------------------------------------------------|---------------------------------|----------------------------------------|---------------------------------|------------------------------------|--------------------------------------------|-------------------------------------------------|----------------------------------|-----------------------------------------------------|-------------------------------------------|---------------------------------|---------------------------------|---------------------------------|
| (See Notes<br>1, 2, 3 and 4<br>Below)<br>INCHES     | D, IN.,<br>Min.                 | l← D→<br>d, IN.,<br>Max.               | ELECTRODE<br>FORCE<br>LB.       | TIME<br>CYCLES<br>(60<br>Per Sec.) | Tensile<br>Strength<br>Below<br>150000 Psi | Tensile<br>Strength<br>150000 Psi<br>and Higher | IN.                              | to<br>G                                             | IN.<br>Approx.                            | 70000<br>Up to<br>90000<br>Psi  | 90000<br>Up to<br>150000<br>Psi | 150000<br>Psi<br>and<br>Higher  |
| 0.006                                               | 3/16                            | 3/32                                   | 180                             | 2                                  | 2000                                       | 2000                                            | 3/16                             | 3/16                                                | 0.045                                     | 60                              | 70                              | 85                              |
| 0.008                                               | 3/16                            | 3/32                                   | 200                             | 3                                  | 2000                                       | 2000                                            | 3/16                             | 3/16                                                | 0.065                                     | 150                             | 170                             | 210                             |
| 0.012                                               | 1/4                             | 1/8                                    | 260                             | 3                                  | 2100                                       | 2000                                            | 1/4                              | 1/4                                                 | 0.076                                     | 185                             | 210                             | 250                             |
| 0.014                                               | 1/4                             | 1/8                                    | 300                             | 4                                  | 2500                                       | 2200                                            | 1/4                              | 1/4                                                 | 0.082                                     | 240                             | 250                             | 320                             |
| 0.016<br>0.018<br>0.021<br>0.025<br>0.031           | 1/4<br>1/4<br>1/4<br>3/8<br>3/8 | 1/8<br>1/8<br>5/32<br>5/32<br>3/16     | 330<br>380<br>400<br>520<br>650 | 4<br>4<br>5<br>5                   | 3000<br>3500<br>4000<br>5000<br>6000       | 2500<br>2800<br>3200<br>4100<br>4800            | 1/4<br>1/4<br>5/16<br>3/8<br>3/8 | 5/16<br>5/16<br>5/16<br>7/16<br>1/2                 | 0.088<br>0.093<br>0.100<br>0.120<br>0.130 | 280<br>320<br>370<br>500<br>680 | 300<br>360<br>470<br>600<br>800 | 380<br>470<br>500<br>680<br>930 |
| 0.034                                               | 3/8                             | 3/16                                   | 750                             | 6                                  | 7000                                       | 5500                                            | 7/16                             | 9/16                                                | 0.150                                     | 800                             | 920                             | 1100                            |
| 0.040                                               | 3/8                             | 3/16                                   | 900                             | 6                                  | 7800                                       | 6300                                            | 7/16                             | 5/8                                                 | 0.160                                     | 1000                            | 1270                            | 1400                            |
| 0.044                                               | 3/8                             | 3/16                                   | 1000                            | 8                                  | 8700                                       | 7000                                            | 7/16                             | 11/16                                               | 0.180                                     | 1200                            | 1450                            | 1700                            |
| 0.050                                               | 1/2                             | 1/4                                    | 1200                            | 8                                  | 9500                                       | 7500                                            | 1/2                              | 3/4                                                 | 0.190                                     | 1450                            | 1700                            | 2000                            |
| 0.056                                               | 1/2                             | 1/4                                    | 1350                            | 10                                 | 10300                                      | 8300                                            | 9/16                             | 7/8                                                 | 0.210                                     | 1700                            | 2000                            | 2450                            |
| 0.062                                               | 1/2                             | 1/4                                    | 1500                            | 10                                 | 11000                                      | 9000                                            | 5/8                              | 1                                                   | 0.220                                     | 1950                            | 2400                            | 2900                            |
| 0.070                                               | 5/8                             | 1/4                                    | 1700                            | 12                                 | 12300                                      | 10000                                           | 5/8                              | 1-1/8                                               | 0.250                                     | 2400                            | 2800                            | 3550                            |
| 0.078                                               | 5/8                             | 5/16                                   | 1900                            | 14                                 | 14000                                      | 11000                                           | 11/16                            | 1-1/4                                               | 0.275                                     | 2700                            | 3400                            | 4000                            |
| 0.094                                               | 5/8                             | 5/16                                   | 2400                            | 16                                 | 15700                                      | 12700                                           | 3/4                              | 1-1/2                                               | 0.290                                     | 3550                            | 4200                            | 5300                            |
| 0.109                                               | 3/4                             | 3/8                                    | 2800                            | 18                                 | 17700                                      | 14000                                           | 13/16                            | 1-1/2                                               | 0.290                                     | 4200                            | 5000                            | 6400                            |
| 0.125                                               | 3/4                             | 3/8                                    | 3300                            | 20                                 | 18000                                      | 15500                                           | 7/8                              | 2                                                   | 0.300                                     | 5000                            | 6000                            | 7600                            |

NOTES:

1. Types of Steel-301, 302, 303, 304, 308, 309, 310, 316, 317, 321, 347 & 349

Waterial should be free from scale, oxides, paint, grease and oil.
 Welding conditions determined by thickness of thinnest outside piece "T."
 Data for total thickness of pile-up not exceeding 4 "T". Maximum ratio between two thicknesses 3 to 1.

5. Electrode Material, CMW<sup>®</sup> 3, CMW<sup>®</sup> 100, or ELKONITE<sup>®</sup> 10W3

Minimum weld spacing is that spacing for two pieces for which no special precautions need be taken to compensate for shunted current effect of adja-cent welds. For three pieces increase spacing 30 per cent.

| THICKNESS<br>"T" OF<br>THINNEST<br>OUTSIDE<br>PIECE<br>(See Notes 1,<br>2, 3 and 4<br>Below)<br>INCHES | ELECTRODE<br>WIDTH<br>AND<br>SHAPE<br>(See Note<br>5 Below)<br>R=3"<br>K=3"<br>W, IN, Min. | ELECTRODE<br>FORCE<br>LB.                                           | ON TIME<br>CYCLES<br>(60 Per Sec.)                                      | OFF T<br>FOR MA<br>SPE<br>(Pressur<br>CYC<br>2 "T"  | TIME<br>XIMUM<br>ED<br>e-Tight)<br>LES<br>4 "T" | MAX<br>WELD<br>IN. PER<br>2 "T"                    | IMUM<br>SPEED<br>MINUTE<br>4 °T"                   | Wi<br>PEF<br>2 °T"                                       | ELDS<br>RINCH<br>4 "T"                                   | WELDING<br>CURRENT<br>(Approx.)<br>AMPS.                              | MINIMUM<br>CONTACTING<br>OVERLAP<br>(See Note<br>6 Below)         |
|--------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|---------------------------------------------------------------------|-------------------------------------------------------------------------|-----------------------------------------------------|-------------------------------------------------|----------------------------------------------------|----------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|-----------------------------------------------------------------------|-------------------------------------------------------------------|
| 0.006<br>0.008<br>0.010<br>0.012<br>0.014<br>0.016<br>0.018<br>0.021<br>0.025<br>0.031                 | 3/16<br>3/16<br>1/4<br>1/4<br>1/4<br>1/4<br>1/4<br>3/8<br>3/8                              | 300<br>350<br>400<br>450<br>500<br>600<br>650<br>700<br>850<br>1000 | 2<br>2<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3 | 1<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>3<br>3 | 1<br>2<br>2<br>3<br>3<br>3<br>3<br>3<br>4<br>4  | 60<br>67<br>45<br>51<br>51<br>55<br>55<br>50<br>50 | 67<br>56<br>55<br>46<br>50<br>50<br>55<br>47<br>47 | 20<br>18<br>16<br>15<br>14<br>14<br>13<br>13<br>12<br>12 | 18<br>16<br>14<br>13<br>13<br>12<br>12<br>12<br>11<br>11 | 4000<br>4600<br>5000<br>6200<br>6700<br>7300<br>7900<br>9200<br>10600 | 1/4<br>1/4<br>5/16<br>5/16<br>5/16<br>5/16<br>3/8<br>7/16<br>7/16 |
| 0.040<br>0.050<br>0.062<br>0.070<br>0.078<br>0.094<br>0.109<br>0.125                                   | 3/8<br>1/2<br>1/2<br>5/8<br>5/8<br>5/8<br>3/4<br>3/4<br>3/4                                | 1300<br>1600<br>1850<br>2150<br>2300<br>2550<br>2950<br>3300        | 3<br>4<br>4<br>4<br>5<br>5<br>6                                         | 4<br>5<br>5<br>6<br>7<br>6                          | 5<br>5<br>7<br>7<br>7<br>7<br>9<br>8            | 47<br>45<br>40<br>44<br>40<br>36<br>38<br>38<br>38 | 45<br>44<br>41<br>41<br>38<br>37<br>37             | 11<br>10<br>9<br>9<br>9<br>8<br>8<br>8                   | 10<br>9<br>8<br>8<br>8<br>8<br>7<br>7<br>7               | 13000<br>14200<br>15100<br>16500<br>16600<br>16800<br>17000           | 1/2<br>5/8<br>5/8<br>11/16<br>11/16<br>3/4<br>13/16<br>7/8        |

## SCHEDULE FOR SEAM WELDING STAINLESS STEEL

NOTES:

 Types of Steel—301, 302, 303, 304, 308, 309, 310, 316, 317, 321, 347 & 349.
 Material should be free from scale, oxides, paint, grease and oil.
 Welding conditions determined by thickness of thinnest outside piece "T."
 Data for total thickness of pile-up not exceeding 4 "T". Maximum ratio between two thicknesses 3 to 1.

5. Electrode material, CMW® 100

6. For large assemblies minimum contacting overlap indicated should be increased 30 per cent.

From American Welding Society "Recommended Practices for Resistance Welding"



Phone: 866-634-8884

Fax: 866-239-6995

Email: cmw@cmwinc.com

Spot welding galvanized low-carbon steel Electrode Diameter And Shape Materia Thicknes Welding Current Minimum Weld Net Electroo Weld Minimu Minimum Weld Time Nugget Size Tensior ontactin (Approx. Spacing Force Shear Overlap Strengt notes 1, 2 & 3 note 4 D d Oc Inches In. In. Deg. Lb. Amps. Cycles In Lb. Inches Inches 0.022 5/8 3/16 120 300 13000 8 550 5/8 0 15 5/8 5/8 3/16 120 400 5/8 1000 5/8 0.030 13000 10 0.16 0.036 5/8 1/4 120 500 13500 1180 3/4 5/8 12 0.19 0.039 5/8 1/4 120 650 14000 13 0.21 1400 3/4 5/8 0.052 5/8 1/4 120 725 14500 18 0.22 1700 7/8 1/16 0.063 3/4 1/4 120 850 15500 22 0.24 2500 1 - 1/83/4 3/4 5/16 120 1200 19000 24 3200 0.28 7/8 0.078 1 - 1/40.093 3/4 3/8 120 1400 21000 30 0.34 4200 1-1/2 0.108 7/8 3/8 120 1750 20000 37 0.40 5900 1-3/4 1-1/8 0.123 7/8 3/8 120 2000 20000 42 0.48 7200 1-1/8 2

NOTES:

- 1. Material must be free from dirt, grease, paint etc. prior to welding, but may have light oil.
- 2. Two equal metal thicknesses of each gage.
- 3. Commercial coating weight is 1.25 oz. per square foot.
- 4. Electrode Material-RWMA Group A, Class 2. CMW<sup>®</sup> 3.
- 5. Water Cooling: 2 gallons per minute.

Projections should be larger in diameter for galvanized than for uncoated material.

| Projection | welding | galvanized | low-carbon | steel |
|------------|---------|------------|------------|-------|
|------------|---------|------------|------------|-------|



Seam welding galvanized low-carbon steel

| Material<br>Thickness | Electrode<br>Width<br>And Shape<br>note 4 |         | Net<br>Electrode<br>Force | Welding<br>Current<br>(Approx.) | We<br>Tin | eld<br>ne | Welding<br>Speed | Welds<br>Per<br>Inch | Minimum<br>Contacting<br>Overlap |
|-----------------------|-------------------------------------------|---------|---------------------------|---------------------------------|-----------|-----------|------------------|----------------------|----------------------------------|
| notes 1, 2,<br>& 3    | not                                       | e 4<br> |                           |                                 |           |           |                  |                      | 87777774                         |
|                       |                                           | Ύ́      |                           |                                 | Heat      | Cool      |                  |                      |                                  |
|                       | <sub>20</sub> ≫                           | 11 ]    |                           |                                 | Time      | Time      |                  |                      | Strine,                          |
|                       | 10                                        | $\Psi$  |                           |                                 | 11110     | 11110     |                  |                      |                                  |
|                       | · -                                       | - E     |                           |                                 |           |           |                  |                      | STREET-S                         |
|                       | w                                         | Е       |                           |                                 |           |           |                  |                      |                                  |
| Inches                | In.                                       | In.     | Lb.                       | Amps.                           | Cycles    | Cycles    | In./Min.         | W/ln.                | Inches                           |
| 0.015                 | 3/8                                       | 1/4     | 900                       | 15000                           | 2         | 2         | 120              | 7.5                  | 3/8                              |
| 0.036                 | 1/2                                       | 1/4     | 1100                      | 18000                           | 4         | 2         | 60               | 10.0                 | 1/2                              |
| 0.039                 | 1/2                                       | 1/4     | 1200                      | 19000                           | 4         | 3         | 60               | 9.0                  | 1/2                              |
| 0.052                 | 1/2                                       | 1/4     | 1350                      | 20000                           | 5         | 1         | 90               | 7.0                  | 9/16                             |
| 0.063                 | 1/2                                       | 5/16    | 1500                      | 19800                           | 8         | 2         | 54               | 7.0                  | 5/8                              |
| 0.078                 | 5/8                                       | 5/16    | 1850                      | 23000                           | 10        | 7         | 30               | 7.0                  | 11/16                            |

#### NOTES:

- 1. Material must be free from dirt, grease, paint etc. prior to welding, but may have light oil.
- 2. Two equal metal thicknesses of each gage.
- Commercial coating weight is 1.25 oz. per square foot.
- 4. Electrode Material-RWMA Group A, Class 2. CMW<sup>®</sup> 3.
- 5. Pressure-tight joints require stripping the zinc coating prior to welding.
- 6. Nominal electrode diameter ranges between 8 to 10 inches.

From American Welding Society "Recommended Practices for Resistance Welding."



Phone: 866-634-8884

Fax: 866-239-6995

Email: cmw@cmwinc.com

#### **RECOMMENDED ELECTRODE MATERIALS**

The process of resistance welding makes it possible to join most metals, similar or dissim-ilar. Bonds of adequate strength are obtainable for an extremely wide range of applications. Selecting electrodes of the proper alloy is a most important consideration in producing good welds at the required speed. The chart below is a valuable guide to this selection.

The weldability of two materials as expressed in the following chart has been derived after careful laboratory study and field survey of many factors which influence the welding or resultant weld of the metals. The factors include:

1. Thermal and electrical conductivity

Metallurgical properties
 Nature of resultant weld or alloy
 Weld strength
 Relative accuracy in control of welding conditions necessary

The weldability of metals as shown in the chart applies only when conventional spot weld-ing methods are used on similar thicknesses of material. However, many metal combina-tions which are listed as having a "poor weldability" may be satisfactorily joined by using a special setup or procedure.

There is a  $\rm CMW^{III}$  Alloy for each specific welding application. Experienced CMW engineers will provide assistance with special problems.

## **Electrode Materials For SPOT WELDING Similar and Dissimilar Metals**

|                                                | Tungsten<br>Molyb-        | Mag-<br>nesium | Nickel<br>Alloys        | Nickel                  | Stainless<br>Steel           | Chrome<br>Steel          | Cad-<br>mium                        | Galva-<br>nized<br>Steel<br>Zn. Plate | Terne<br>Plate                       | Tin<br>Plate                            | Scaly<br>Steel                          | C. R.<br>Steel                          | Phos-<br>phor                 | Silicon<br>Bronze        | Nickel<br>Silver | Cupro<br>Nickel | Brass<br>Yellow | Brass<br>Red    | Copper                                     | Alu-<br>minum                                | Alu-<br>minum           | C. P.<br>Tita-      |                  |
|------------------------------------------------|---------------------------|----------------|-------------------------|-------------------------|------------------------------|--------------------------|-------------------------------------|---------------------------------------|--------------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|-------------------------------|--------------------------|------------------|-----------------|-----------------|-----------------|--------------------------------------------|----------------------------------------------|-------------------------|---------------------|------------------|
| Commercially Pure<br>Titanium                  |                           |                |                         |                         |                              |                          |                                     |                                       |                                      |                                         |                                         |                                         |                               |                          |                  |                 |                 |                 |                                            | , and jo                                     |                         | A "<br>  1          |                  |
| Aluminum<br>2S-3S                              |                           | C  <br>  1 1 1 | E II                    | E II                    | H I<br>I <sup>2 3</sup><br>4 | H II<br>I <sup>3</sup> 8 | E I<br>I <sup>34</sup> <sub>9</sub> | D I<br>I <sup>3 4</sup><br>9          | D I<br>I <sup>34</sup> <sub>9</sub>  | D  <br>  <sup>3 4</sup><br>9            | +                                       | E II<br>I <sup>3</sup> 4                | D II<br>I <sup>2</sup> 5      | D II<br>I <sup>2</sup> 5 |                  |                 | DII<br>I 5      | E   <br>  2     | H V<br>I 2                                 | C I<br>I 1                                   | C I<br>I 1              |                     |                  |
| Aluminum Alloys<br>Duralumin<br>52S-17S-24S    |                           | C I            | E   <br>  2             | E   <br>  23            | H I<br>I <sup>2,3</sup>      | H II<br>I <sup>3</sup> 8 | E 1                                 | D I<br>I <sup>3,4</sup> <sub>9</sub>  | D I<br>I <sup>3,4</sup> <sub>9</sub> | D  <br>  34                             | 4                                       | E II                                    | D II<br>I <sup>2</sup> 5      | D II<br>1 <sup>2</sup> 5 |                  |                 | D   <br>  6     | E   <br>  2     | E V                                        | D 1                                          |                         |                     |                  |
| Copper—Pure                                    | H II<br>V 3               | HI<br>V5       | E II<br>V               | E II<br>V 3 e           | H I<br>V 23                  | H II<br>V 34             | H '@                                | H I<br>V <sup>3,4</sup>               | H I<br>V 34                          | H I<br>V 34                             | 4                                       | H II<br>V 3 4                           | D II<br>V 5.                  | DII<br>V 56              | D II<br>V ₅e     | D II<br>5 D 5 6 | D II<br>V 6     | E II<br>V 6     | K V<br>V 2                                 | -                                            |                         |                     |                  |
| Brass—Red<br>5-25% Zinc                        |                           | H I<br>II 5    | D II<br>V 6             | D II<br>V 6             | H II<br>V                    | H II<br>V                | H '@                                | H I<br>V 6                            | H 1<br>V 6                           | H I<br>V 6                              |                                         | H II<br>II 34                           | D II<br>V 6                   | D II<br>V 6              | D II<br>V 6      | D II<br>V       | D II<br>II      | E Ⅱ<br>Ⅱ ₅6     |                                            |                                              |                         |                     |                  |
| Brass—Yellow<br>25-40% Zinc                    |                           | E  <br>   5    | D II<br>IV 6            | D II<br>II 6            | H II<br>IV                   | H II<br>IV               | E I<br>IV 6                         | E I<br>IV 6                           | E 1(1)<br>IV 6                       | E I<br>IV 6                             |                                         | E II<br>IV 34                           | C II<br>IV 1                  | C II<br>IV 1             | C II<br>IV 1     | C II<br>IV 1    | C II<br>II 1    |                 |                                            |                                              |                         |                     |                  |
| Cupro-Nickel                                   |                           | D  <br>   2 5  | C II                    | C V                     | E "C                         | E   <br>   28            | E 1                                 | E  <br>   2                           | E 1                                  | E  <br>   2                             | H <sup>I</sup> (                        |                                         | C II<br>II 1                  | C II<br>II 1             | C II<br>II       | B II<br>II 1    |                 |                 |                                            |                                              |                         |                     |                  |
| Nickel Silver                                  |                           | D I<br>II 25   | C II                    | C V                     | E ⊮<br>∏ 2                   | E   <br>   28            | E 1(1)<br>11 2                      | E  <br>   2                           | E 1                                  | E  <br>   2                             | H <sup>1</sup> (                        | 1) E II<br>7 II 3                       | C II<br>II 1                  | CII<br>II 1              | B II<br>II 1     | -               |                 |                 |                                            |                                              |                         |                     |                  |
| Silicon Bronze                                 |                           | D I<br>II 2 5  | C                       | D II<br>II              | E "C                         | E II<br>II 8             | E '@                                | E I<br>II                             | E '@                                 | E I<br>II                               | H <sup>1</sup> (                        |                                         | C II<br>II 1                  | B II<br>II 1             |                  |                 |                 |                 |                                            |                                              |                         |                     |                  |
| Phosphor Bronze<br>Grades A, C, & D            |                           | E  <br>   2 g  | D II                    | D II<br>II              | E "C                         | E II<br>II 8             | E '@                                | E I<br>II                             | E '@                                 | E I<br>II                               | H <sup>1</sup> (                        |                                         | B II<br>II 1                  | -                        |                  |                 |                 |                 |                                            |                                              |                         |                     |                  |
| C. R. Steel<br>H. R. Steel—Clean               | D II<br>II 3              |                | D II<br>II 3            | D   <br>   3            | B II<br>III                  | B II<br>II 8             | C II<br>II                          | C I<br>II                             | B ()<br>   6                         | C I                                     | E <sup>I</sup> (                        |                                         |                               |                          |                  |                 |                 |                 |                                            |                                              |                         |                     |                  |
| Scaly<br>H. R. Steel                           | H II<br><sup>1</sup> 3 7  | ,              |                         |                         | D "()<br>"() 7               | D II<br>100 7 8          | D   <br>1<br>1<br>7                 | D I<br>1<br>0 6 7                     | D []                                 | D I                                     | E '(                                    | 1)<br>7                                 |                               |                          |                  |                 |                 |                 |                                            |                                              |                         |                     |                  |
| Tin Plate                                      | E II                      | E I<br>I ₅ g   | D I                     | D II<br>I 9             | C "⊡<br>I                    | CII<br>I <sup>8</sup>    | D 1                                 | C I<br>I 69                           | D []                                 | D I                                     | -<br>9                                  |                                         |                               |                          |                  |                 |                 |                 |                                            |                                              |                         |                     |                  |
| Terne Plate                                    | E   <br> ( ) 9            | E  <br>  5g    | D I<br>I <sup>3</sup>   | D II<br>I <sup>9</sup>  | C II                         | CII<br>I <sup>8</sup>    | C '@                                | C I<br>I <sup>6</sup>                 | C  <br>  6                           | -                                       |                                         |                                         |                               |                          |                  |                 |                 |                 |                                            |                                              |                         |                     |                  |
| Galvanized Steel<br>Zinc Plate                 | E II<br>I 9               | E I<br>¹@ ₅ g  | D   <br>1    3          | D II<br>II 9            | C II<br>I                    | C II<br>I 89             | C  <br>  9                          | C 1<br>1<br>1<br>9                    | As a l<br>rolled                     | DABILI<br>basis fo<br>(mild)            | ITY<br>or comp<br>steel h               | parison d<br>as been                    | old                           |                          |                  |                 |                 |                 | - CMW                                      | RODES<br>(8) 28<br>(8) 3                     |                         |                     |                  |
| Cadmium Plate                                  | E II<br>I 9               | E  <br>  5     | D I<br>I 3              | D II<br>I 9             | C II<br>I                    | CII<br>I 8               | C  <br>  9                          | -                                     | chose<br>desig<br>A - Ex<br>B - Ve   | en and<br>nated a<br>kcellen<br>erv Gor | its weld<br>as "exco<br>t E -<br>nd H - | dability<br>ellent."<br>Poor<br>Verv Po | or                            | BLOCK<br>WELI            | D-               | ELECTR          |                 | r II<br>I\<br>V | 1 - CMN<br>/ - ELK<br>' - ELK(<br>'1 - ELK | ONITE®<br>ONITE®<br>ON® 100                  | 0 10W3<br>0M*<br>0 1W3∆ | or TC-5             |                  |
| Chrome Plate                                   | D    <br>    8            |                | D II<br>II <sup>8</sup> | D II<br>II <sup>8</sup> | B"∭<br>Ⅲ <sup>8</sup>        | B II<br>II <sup>8</sup>  |                                     |                                       | C - G<br>D - Fa                      | ood<br>air                              | K -                                     | Impracti                                | cal                           | ABILI                    | TY               | AGAIN           | ST AL           | Ĺ               | ELKON<br>ELKC                              | N® 100 V<br>NITE® 1<br>anged.                | V may I<br>10W3 o       | pe subst<br>r TC-10 | tuted.<br>may be |
| Stainless Steel<br>18-8 Type                   | D I I                     |                | D II<br>II              | D III<br>"①             |                              | $\Sigma$                 |                                     |                                       | ELEC<br>I - CN                       | AW® 2                                   | 9 <b>ES</b><br>8                        |                                         |                               | AGAIN                    | NST              | INFORM<br>TION  | IA-             | (               | DElectr                                    | ode mat<br>d choice.                         | erials ir               | n circles           | are              |
| Nickel<br>Grade A                              | D II<br>II <sup>2</sup> 5 |                | C II<br>II <sup>1</sup> | B II<br>II <sup>1</sup> | _                            |                          |                                     |                                       | III - C<br>IV - E<br>V - El          | MW®<br>LKON<br>LKON®                    | 100<br>ITE® 1<br>9 100M                 | 0W3<br>I*                               | /                             |                          |                  |                 |                 |                 | . Good<br>. May                            | d weld st<br>be weld<br>weld stre            | rength.<br>ed unde      | er specia           | l conditions.    |
| Nickel Alloys<br>Monel Nichrome<br>(High Res.) | D   <br>   <sup>2</sup> 5 |                | B II<br>II <sup>1</sup> | _                       |                              |                          |                                     |                                       | VI - E<br>*ELK<br>∆ EL               | :LKON<br>(ON® 1<br>.KONIT               | 11E® 1<br>100 W r<br>E® 10              | W3∆or<br>may be s<br>W3 or T(           | i C-5<br>substitut<br>C-10 ma | ed.<br>ty be             |                  |                 |                 | 5               | obtai<br>obtai                             | ling conc<br>olled.                          | litions r               | nust be             | a suck is        |
| Magnesium<br>Alloys                            |                           | D  <br>  1 =   | ;                       |                         |                              |                          |                                     |                                       | inte<br>OEle<br>sec                  | ectrode<br>ond ch                       | jed.<br>materi<br>ioice.                | ials in cir                             | cles are                      | 9                        |                  |                 |                 | 7               | to the steel                               | e work.<br>d practice<br>before v            | e recon                 | imends              | cleaning         |
| Molybdenum<br>Tungsten                         | D   <br>   2 5            |                |                         |                         |                              |                          |                                     |                                       |                                      |                                         |                                         |                                         |                               |                          |                  |                 |                 | g               | disco<br>disco<br>Coat<br>burn             | one nation.<br>loration.<br>ing may<br>away. | dissolv                 | e in othe           | r metals or      |

www.cmwinc.com



Phone: 866-634-8884

Fax: 866-239-6995

Email: cmw@cmwinc.com

This Chart shows graphically the importance of Electrode maintenance. This is not only important from the quality of the weld, which is of first importance, also extra load added to the welding machine and equipment. Read the data on the chart, you can then draw your own conclusions.

### YOU CAN'T AFFORD TO NEGLECT YOUR ELECTRODES!

Keep your Electrodes dressed for maximum production and quality welds.

#### A TIP DRESSER WILL PAY DIVIDENDS!

We can supply you with hand operated Tip Dressers or Pneumatic Power Driven Dressers. Design or type will depend on your production requirements. Pages 66 & 67.



**RESISTANCE WELDING** 

(†) Current density required for this gage to be 200,000 amps per sq. in. Setting is 9,900 amps for condition (B)

(\*) Five inch diameter air cylinder A 80 lbs. air pressure—1570 lbs. on ram.

Reproduced by permission of McGraw-Hill Book Company, Inc.

# Southern Copper and Supply 800-289-2728 WELDING ELECTRODE / CAP EVALUATION FORM



|                         | Pł                    | none:              | 866-         | 634-8      | 884                         | F               | ax:         | 866-23                  | 9-69                          | 995               | Email: cm     | w@cmwinc.c         |  |  |
|-------------------------|-----------------------|--------------------|--------------|------------|-----------------------------|-----------------|-------------|-------------------------|-------------------------------|-------------------|---------------|--------------------|--|--|
|                         |                       | Facility           |              |            |                             |                 |             |                         |                               |                   |               |                    |  |  |
| <b>o</b>                |                       | Locatio            | n            |            |                             |                 |             |                         |                               |                   |               |                    |  |  |
| Contact                 |                       |                    |              |            | Phone                       |                 |             | F                       | ax _                          |                   | Date          |                    |  |  |
| Equ                     | ipmen                 | t P                | lant/l       | _ine #     | <u> </u>                    |                 |             |                         |                               |                   |               |                    |  |  |
| TYPE                    |                       | Rot                | ot Fix<br>Au |            | ed Pre<br>ito               |                 | SS          | Hand                    |                               | Online            | Offline       | Other<br>(Specify) |  |  |
| GUN STYLE               |                       | C Gun              |              | Pinch      |                             | Scissor         |             | Other<br>(Specify)      |                               |                   | Comment       |                    |  |  |
| CONDITION               |                       | New                |              | Old        |                             | Good            |             | Poor                    |                               |                   |               |                    |  |  |
| STEPPER<br>CAPABILITY   |                       | Number of<br>Steps |              | Line       | ear                         | Non-lir         | near        | None                    |                               |                   |               |                    |  |  |
| UP-SLOPE<br>CAPABILITY  |                       | Ye                 | s            | N          | 0                           |                 |             | 1                       |                               |                   |               |                    |  |  |
| PULSE<br>CAPABILITY     |                       | Ye                 | s N          |            | 0                           | -               |             |                         |                               |                   |               |                    |  |  |
| NUMBER OF               |                       | Scheo<br>per S     | r SCR per    |            | rmers Guns p<br>CR Transfor |                 | per<br>rmer | Transformer<br>Taps     |                               | Transforme<br>KVA | ir            |                    |  |  |
|                         |                       |                    |              |            | Wo                          | orkpied         | ces         | (Materia                | als)                          |                   |               |                    |  |  |
| POSITION                |                       |                    | Bare         | Bare Steel |                             | Aluminized      |             | IECK ONE<br>lectroplate | (per workpiece)<br>Galvanneal |                   | Hot Dipped    | Organic            |  |  |
| Outside                 | Dutside               |                    |              |            |                             |                 |             |                         |                               |                   | Gaivanized    |                    |  |  |
| Inside                  | Inside                |                    |              |            |                             |                 |             |                         |                               |                   |               |                    |  |  |
| Inside                  |                       |                    |              |            |                             |                 |             |                         |                               |                   |               |                    |  |  |
| Outside                 | Outside               |                    |              |            |                             |                 |             |                         |                               |                   |               |                    |  |  |
| FIT-UP                  |                       | od Po              |              | oor        | r                           |                 |             | Comments                |                               |                   |               |                    |  |  |
|                         |                       |                    |              |            |                             |                 |             |                         |                               |                   |               |                    |  |  |
|                         |                       |                    |              |            |                             | ELEC            | CTRC        | DDES                    |                               |                   |               |                    |  |  |
| NOSE A<br>STYLE (Pointe |                       | ed) (Dor           |              | ne) (F     |                             | C (C            |             | D<br>Dffset)            | Γ)                            | E<br>runcated)    | F<br>(Radius) | Other<br>(Specify) |  |  |
|                         |                       | 1                  | 1 Class      |            | Clas<br>(D                  | ss 20<br>SC) (5 |             | Other<br>pecify)        |                               |                   |               |                    |  |  |
| TAPER<br>STYLE          | TAPER Female<br>STYLE |                    | lle Mal      |            | 9                           |                 |             |                         |                               | Comm              | nents         |                    |  |  |
| ALIGN-<br>MENT          |                       | Poor               |              | Req<br>Bac | uires<br>ckup               |                 |             |                         |                               |                   |               |                    |  |  |

# Southern Copper and Supply 800-289-2728 RESISTANCE WELDING DO'S AND DON'TS



Phone: 866-634-8884

Fax: 866-239-6995

Email: cmw@cmwinc.com

## DO'S AND DON'TS FOR RESISTANCE WELDING ELECTRODES

|          | DO'S                                                                                                                                                          | DON'TS                                                                                                                                                   |
|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1.       | Use the proper electrode material for the job you are doing.                                                                                                  | <ol> <li>Never use unidentified electrodes or electrode<br/>materials.</li> </ol>                                                                        |
| 2.<br>3. | Use standard electrodes wherever possible.<br>Use the most suitable tip diameter for the<br>thickness of stock being welded.                                  | <ol> <li>Avoid special, offset or irregular tips when the job<br/>can be done with a standard straight tip.</li> </ol>                                   |
| 4.       | Use open sight drains to observe more readily the water flow through the holders.                                                                             | <ol> <li>Don't use small tips on heavy gauge welding jobs<br/>or large tips on small work.</li> </ol>                                                    |
| 5.       | Connect the water inlet hose to the proper<br>holder inlet so that the water flows through the                                                                | <ol> <li>Don't forget to turn on the cooling water full force<br/>before starting to weld.</li> </ol>                                                    |
| 6.       | Internally cool the spot welding tips with cool water flowing at a rate of at least 1/2 gallon                                                                | <ol> <li>Never use water hose that will not fit the holder<br/>water connection nipples snugly.</li> </ol>                                               |
| 7.       | per minute through each tip.<br>Be sure the internal water cooling tube of the                                                                                | <ol> <li>Do not allow water connections to become leaky,<br/>clogged or broken.</li> </ol>                                                               |
| 8        | holder projects into the tip water hole to<br>within 1/4" of the tip hole bottom.                                                                             | <ol> <li>Avoid using holders with leaking or deformed tapers.</li> </ol>                                                                                 |
| 0.       | holder to the proper height when changing to<br>a different length tip.                                                                                       | <ol> <li>Never use electrode holders that do not have an<br/>adjustable internal water cooling tube.</li> </ol>                                          |
| 9.       | Be sure top of adjustable water cooling tube in<br>holders is cut at an angle so as to avoid                                                                  | <ul><li>9. Do not permit adjustable water tube to be "frozen"<br/>by accumulation of deposits. A few drops of oil</li></ul>                              |
| 10       | <ul> <li>Place a thin film of cup grease on the tip taper prior to inserting in the holder, to make</li> </ul>                                                | <ul><li>periodically will keep the tube free.</li><li>10. Do not allow electrodes to remain idle in tapered holder seats for extended periods.</li></ul> |
| 11       | <ul> <li>it easier to remove.</li> <li>Use ejector type holders for easy removal of tips<br/>and to avoid damage to tip tapers.</li> </ul>                    | <b>11.</b> Don't use pipe wrenches or similar tools in removing electrodes.                                                                              |
| 12       | <ul> <li>Keep the tip taper and holder taper clean, smooth<br/>and free of foreign deposits.</li> </ul>                                                       | <b>12.</b> Avoid using white lead or similar compounds to seal a leaking taper.                                                                          |
| 13       | <ul> <li>Dress spot welding electrodes frequently to<br/>maintain the quality of the welds.</li> <li>Dress electrodes in a lathe to their original</li> </ul> | <ol> <li>Never permit a spot welding tip to mushroom<br/>enough to make dressing difficult.</li> </ol>                                                   |
| 15       | <ul><li>contour whenever possible.</li><li>Use a rawhide or rubber mallet for striking holder</li></ul>                                                       | <ul><li>14. Never dress electrodes with a coarse file.</li><li>15. Don't pound on the holder or tip with a steel</li></ul>                               |
| 16       | or tips in aligning operations.<br>Provide flood cooling on both sides of the seam                                                                            | hammer in aligning the welder arms.<br><b>16.</b> Avoid the use of seam welder wheels too thin to                                                        |
| 17       | welding wheel.<br>Use properly designed knurling wheels to maintain                                                                                           | stand the heat or pressure of your job.                                                                                                                  |