

SOUTHERN COPPER & SUPPLY COMPANY, INC.

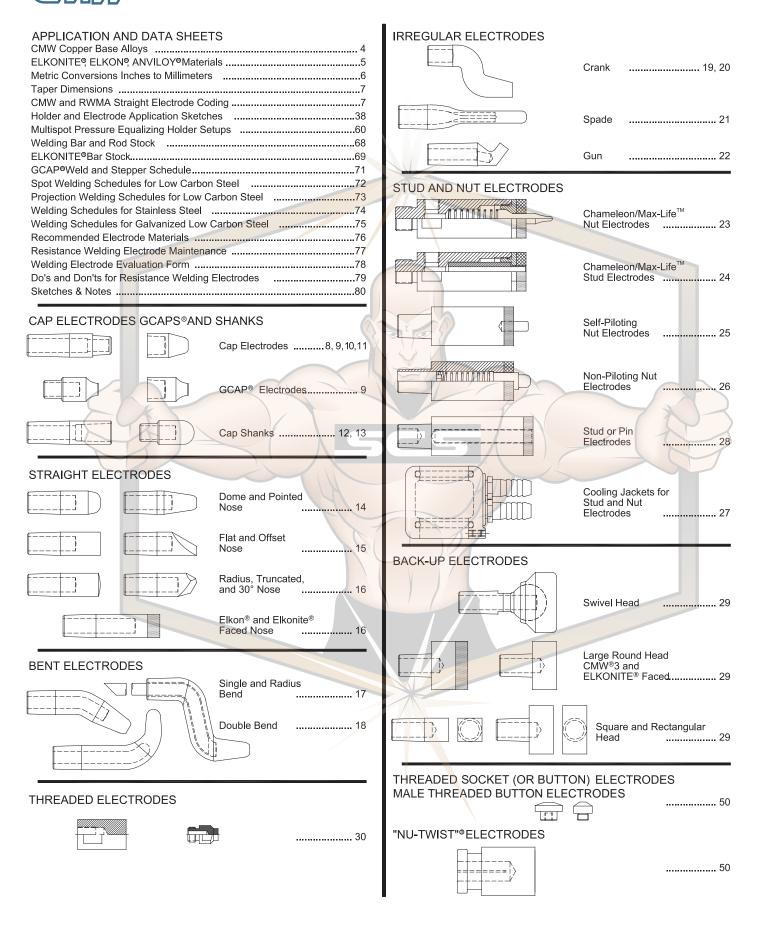
875 Yeager Parkway Pelham, AL 35124 800-289-2728

RESISTANCE WELDING PRODUCTS

• ELECTRODES • HOLDERS • BAR STOCK • SEAM WELDING WHEELS • RINGS • SPECIAL DIES • SHAFTS • BUSHINGS • CASTINGS • FORGINGS • ELECTRODE MATERIALS

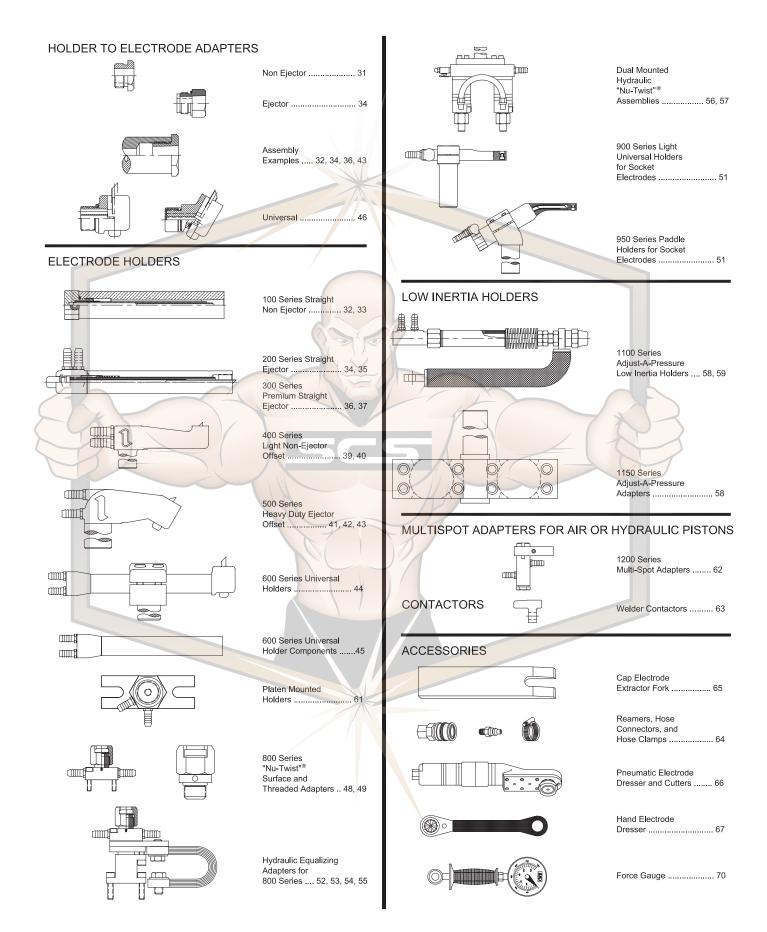
Special electrodes, holders and dies for resistance welding applications

Continuously serving the resistance Welding Industry since 1929, CMW Inc. is an industry leader in the development, engineering and manufacturing of a variety of products. In addition, CMW offers a diversity of special metals for resistance welding applications. CMW's resistance welding products are engineered to provide the most effective materials commercially available to help achieve top quality welds. Experienced CMW engineers will aid you in the design and production of standard or special parts for your application to insure maximum efficiency from CMW's resistance welding products.


CMW Inc. 70 S. Gray Street Indianapolis, IN 46201 Phone: 866-634-8884 Fax: 866-239-6995 Email: cmw@cmwinc.com Website: www.cmwinc.com

CMW Inc. P.O. Box 2266 Indianapolis, IN 46206

SOUTHERN COPPER & SUPPLY COMPANY, INC. 800-289-2728


RESISTANCE WELDING PRODUCTS

565

RESISTANCE WELDING PRODUCTS

Long electrode life is of paramount importance to the user of resistance welding equipment. Selection of the proper CMW alloy or combination of alloys will help to give improved weld strength and electrode life. CMW electrodes are fabricated from alloys selected from the results of laboratory and practical field tests. For special problems, CMW engineers will make recommendations based on their years of experience.

CMW				R.W.M.A. Alloy	Hardness	Electrical Conductivity	Ultimate Tensile	Elongation	Begi	t Softening ns at
ALLOY	Condition	Principal Elements	Class #	Number	Rockwell	%I.A.C.S.	Strength, psi	% in 2"	0°	°F
CMW [®] 28	Wrought**	Copper, Zirconium	1	1.15000	70 B	90	66,000	10	500	930
CMW [®] 3	Cast Wrought***	Copper, Chromium	2	2.18200	70 B 83 B	80 85	50,000 75,000	20 15	500 500	930 930
CMW [®] 328	Wrought***	Copper, Chromium, Zirconium	2	2.18150	83 B	85	75,000	15	500	930
CMW [®] 353	Wrought Cast	Copper, Nickel, Silicon, Chromium	3	3.18000	94 B 90 B	48 48	100,000 85,000	13 10	455 455	850 850
CMW [®] 100	Wrought	Copper, Nickel, Beryllium	3	3.17510	100 B	48	110,000	10	455	850
CMW [®] 73	Cast Wrought	Copper, Beryllium	4	4.17200	38 C 38 C	20 23	110,000 170,000	2 4	375 375	710 710
ELKALOY [®] D	Cast	Copper, Aluminum	5	5.95300	92 B	13	85,000	15	620	1150
Copper	Cast Wrought	Pure Copper		Y	30 B 40 B	95 100	25,000 40,000	50 35	200 200	390 390
ELKALOY®20	Wrought	Copper, Al ₂ O ₃	20	_	75 B	85	54,000	25	800	1475

Typical Physical and Mechanical Properties of CMW[®] Copper Based Alloys

Note: All properties shown are TYPICAL and should not be used for specifications ** Cold drawn bars up to 5/8" diameter

*** Heat treated and cold drawn bars up to 1" diameter

TYPICAL USAGE

CMW® 28 material is recommended for spot welding of coated steels and high conductivity materials, excluding copper and silver.

CMW® 3 material is recommended for spot and seam welding cold and hot-rolled steels and coated materials as well as current carrying shafts and arms, back-up bars for both resistance and arc welding and electrical current carrying structural parts and springs.

CMW® 328 material is recommended for spot and seam welding cold and hot rolled steels. There is some evidence that CMW[®] 328 outperforms CMW[®] 3 material when welding coated or galvanized steels.

CMW® 353 material is recommended for heavy duty offset holders, back-up bars, flash welding dies, current carrying structural members, shafts and bushings in combination with CMW[®] 3.

CMW® 100 material is recommended for spot and seam welding stainless steel and high temperature heat resisting alloys requiring high weld forces, flash welding dies, back-up bars, projection welding electrodes, and high strength, high conductivity electrical components and springs.

CMW[®] 73 material is recommended for flash welding dies, springs, electrical components, high strength backing material for brazed assemblies and wire guides.

ELKALOY® D material is recommended for butt and flash welding dies and clamps for cold rolled and stainless steel, current carrying structural parts, jigs and fixtures, pickling racks and baskets.

ELKALOY® 20 material has exceptional resistance to deformation when welding, and is highly recommended for welding caps for welding coated and galvanized steels. It allows a stable start-up, and generally outlasts other cap materials when welding parameters are not carefully controlled. The material requires upset cold work to develop its properties, and is therefore only available as caps or cap blanks.

ELKONITE[®], ELKON[®], AND ANVILOY[®] MATERIAL

SOUTHERN COPPER & SUPPLY COMPANY, INC. 800-289-2728

> ELKONITE[®] is the registered trade mark of CMW used to identify a group of metal compositions whose elements consist basically of the refractory metals tungsten, molybdenum and tungsten carbide combined with copper. Combinations of these elements produce dense, hard metals of superior wear resistance and strength at elevated temperatures, coupled with good thermal and electrical conductivity. The mechanical and physical properties of the ELKONITE® materials make them particularly suitable as the die inserts and facings for volume projection welding,

flash and butt welding, electrical upsetting, electroforging and mash welding applications.

ELKONITE[®] material is also used successfully as facing on spot welding electrodes where heat balance or mechanical wear resistance are required. The initial premium cost of ELKONITE[®] material is offset by lower production cost per weld due to long die life and less electrode dressing time. The high stability of ELKONITE[®] material insures uniform heating and prevents misalignment, resulting in a higher quality weld.

CMW			R.W.M.A. Group B	Hardness	Electrical Conductivity	Ultimate Tensile	Cross Breaking Strength
GRADE	Type of Material	Class #	Material	Rockwell	%I.A.C.S.	Strength, psi	psi
ELKONITE [®] 1W3	Tungsten-Copper	10	10.74450	77 B	53	63,000	110,000
ELKONITE [®] 3W3	Tungsten-Copper		_	90 B	50	75,000	130,000
ELKONITE [®] 5W3	Tungsten-Copper		-	95 B	48	85,000	140,000
ELKONITE [®] 10W3	Tungsten-Copper	11	11.74400	98 B	45	90,000	150,000
ELKONITE [®] 30W3	Tungsten-Copper	12	12.74350	103 B	41	98,000	170,000
ELKONITE [®] 3W53	Tungsten-Copper Alloy	C SY	100 1	105 B	30	120,000	180,000
ELKONITE [®] 10W53*	Tungsten-Copper Alloy		<u> </u>	109 B	28	160,000	200,000
ELKONITE [®] TC5	Tungsten Carbide-Copper			94 B	45	70,000	140,000
ELKONITE [®] TC10	Tungsten Carbide-Copper		ZA	100 B	42	75,000	160,000
ELKONITE [®] TC20	Tungsten Carbide-Copper			37 C	30	85,000	180,000
ELKONITE [®] TC53*	Tungsten Carbide-Copper Alloy			47 C	18	150,000	220,000
ELKON [®] 100W	Tungsten	13	13.74300	39 C	30	150,000	200,000
ELKON [®] 100M	Molybdenum	14	14.42300	90 B	30	80,000	120,000
ANVILOY [®] 1150**	Tungsten-Nickel-Iron-Molybdenum			34 C	13	140,000	280,000

Typical Physical and Mechanical Properties of CMW[®] Refractory Based Materials

Note: All properties shown are TYPICAL and should not be used for specifications * Properties are in fully heat treated condition ** Hardness is 56 HRA at 1475 °F (800°C)

TYPICAL USES

ELKONITE® 1W3 and 3W3 alloys are generally used for flash and butt welding die inserts where higher electrical and thermal conductivity is necessary and where a degree of malleability is desirable. These materials are also used for spot welding (as a radius faced electrode) low conductivity ferrous metals such as stainless steel.

ELKONITE® 5W3 and TC5 alloys are normally used for light duty projection welding dies where welding pressures are not extreme.

ELKONITE® 10W3 alloy is used for electrode and die inserts in most flash and butt welding dies and for projection welding dies where welding pressures are moderate. It is also used for light electrical upsetting, electroforging dies and seam welder bushing inserts.

ELKONITE® 30W3 and TC10 alloys are recommended for volume projection welding dies where the pressures involved are relatively high. Electrical upsetting of non-ferrous metals and low carbon steel is usually accomplished by the use of such ELKONITE® materials as die facings. Cross-wire welding of large, diameter wire and rod is accomplished with such ELKONITE® materials.

ELKONITE® 3W53 and 10W53 are heat treatable grades of ELKONITE® materials supplied in the fully heat treated condition. If silver brazed to a die backing, such ELKONITE[®] materials should be heat treated after brazing. These harder grades are used primarily for electroforging and electrical upsetting dies, where temperatures and pressures are comparatively high.

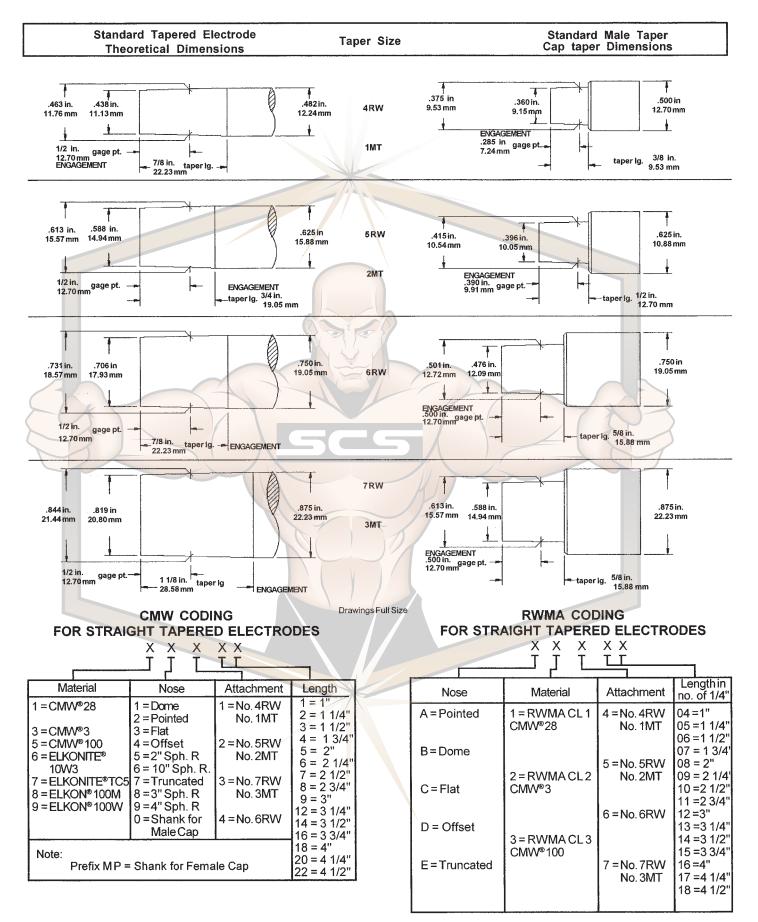
ELKONITE® TC20 and TC53 materials are extremely hard and wear resistant. ELKONITE® TC20 material, while somewhat difficult to machine, may be machined using carbide tipped tools. ELKONITE® TC53 material is a heat treatable grade of such high hardness that machining operations are impractical and the material must be ground. Such ELKONITE® materials are customarily used for special applications of electrical upsetting and electroforging

ELKON® 100W is extremely hard and its ductility is relatively low. It cannot be machined but may be ground to the required shape. It does not alloy appreciably with nonferrous materials and is used for cross-wire welding of metals such as copper and brass. It is also used for electrobrazing electrode material and for some electrical upsetting operations.

ELKON® 100M is used principally for electrobrazing electrode material and for cross-wire welding of nonferrous metals. It is not as hard as ELKON® 100W material and may be machined or drilled to fit the parts to be joined. A typical application of this material, as an electrode, is the welding or brazing of braided or solid copper conductors to ferrous or nonferrous terminals, lugs or fittings.

ANVILOY® 1150 material is used in electrobrazing applications where heat balance is important. The ANVILOY® 1150 material also has good anti-sticking qualities and good high temperature abrasion and hardness properties. The oxidation resistance of both materials is excellent up to 1100°F.

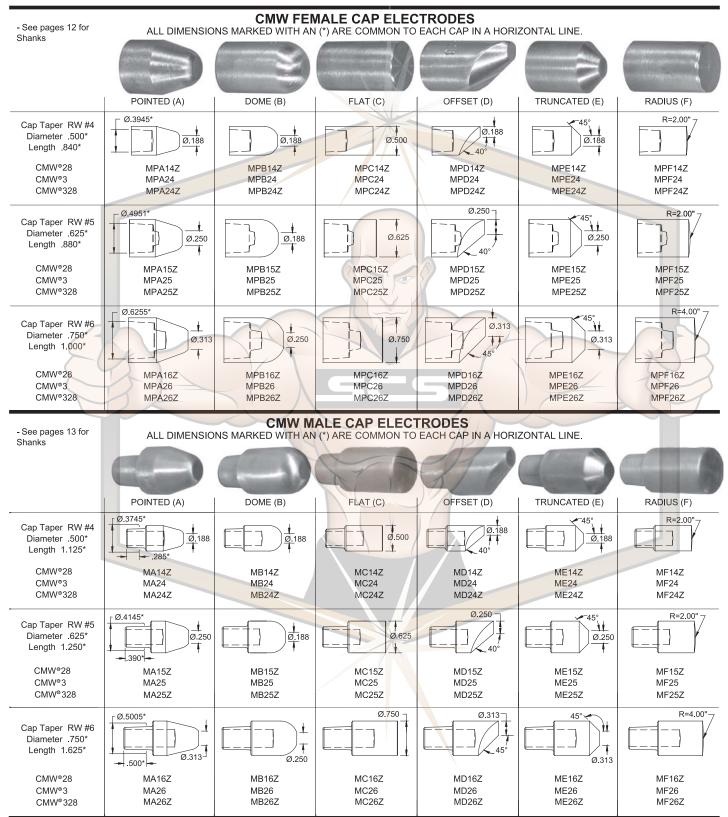
CONVERSION TABLES INCHES INTO MILLIMETERS


To convert from inches to metric we are including the three tables below to allow conversion from inches into millimeters.

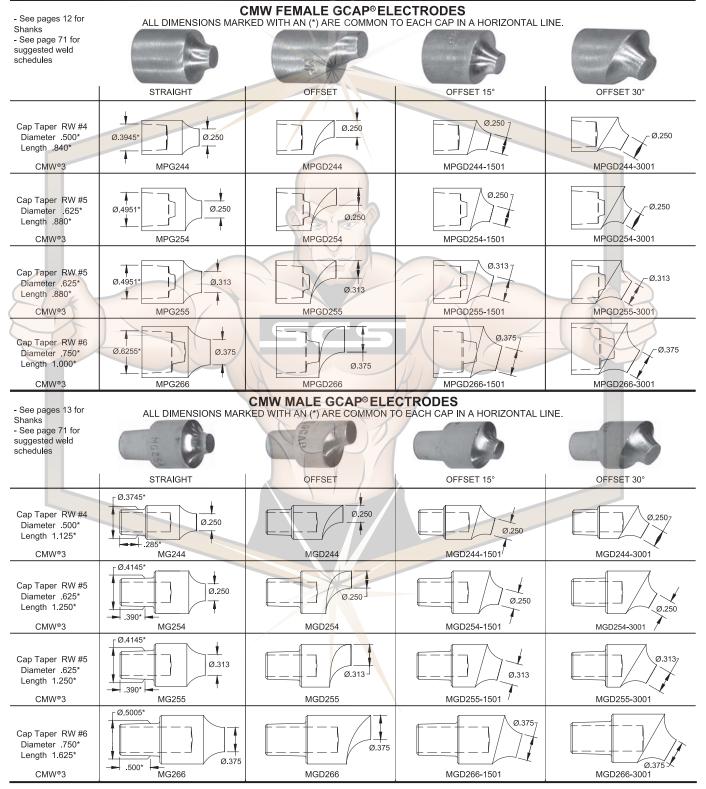
		TAB Decim an inc	From From From From From From	nples: Table I Table I Tota Table I Table I Table I Tota Table I Table I	al 0.588 inc Convert I 3 inc 0.060 inc <u>0.005</u> inc al 3.065 inc Convert I 2-25/32 in <u>1/64</u> i	hes = 1 hes = 1 3.065 i ches = 1 hes = hes = hes = 2-51/64 hches =	14.73 m <u>0.203</u> m 14.933 m nches in 76.2002 1.524 0.127 1 inches = 70.6439 = <u>0.396</u> = 71.0408	illimete illimete illimete to mil millime millime 77.851 into m 9 millim 9 millim 3 millim	ers ers limeters eters ters 2 millin millimeters neters neters	s		TABLE I		
	Inches	Millimeters	Inches	Millimeters		(TABI Fractic an inc millim	ons of h into)		Gag	ge-Decii eter Con Chart	mal-	ı
	0.001 0.002 0.003	0.025 0.051 0.076	0.460 0.470 0.480	11.68 11.94 12.19		Inches	Millimeters	Inches	Millimeters		Gage	Decimal	Millimeter	1
	0.004 0.005 0.006	0.102 0.127 0.152	0.490 0.500 0.510	12.45 12.70 12.95		1/64 1/32	0.3969 0.7937	33/64 17/32	13.0969 13.4937		3 4	.239 .234	6.350 5.953	
	0.007 0.008 0.009	0.178 0.203 0.229	0.520 0.530 0.540	13.21 13.26 13.72		3/64 1/16 5/64	1.1906 1.5875 1.9844	35/64 9/16 37/64	13.8906 14.2875 14.6844	H.C	5 6 7	.209 .194 .179	5.556 5.159 4.762	\square
	0.009	0.229 0.254 0.508	0.550	13.97		3/32 7/64	2.3812 2.7781	19/32 39/64	15.0812 15.4781		8	.179 .164 .150	4.365	
1	0.020	0.508	0.580	14.22 14.48 14.73		1/8 9/64	3.1750 3.5719	5/8 41/64	15.8750 16.2719		10 11	.135 .120	3.571 3.175	7
	0.040 0.050	1.016 1.270	0.590 0.600	14.99 15.24		5/32 11/64 3/16	3.9687 4.3656 4.7625	21/32 43/64 11/16	16.6687 17.0656 17.4625		12 13 14	.105 .090 .075	2.778 2.381 1.984	
	0.060 0.070	1.524 1.778	0.610 0.620	15.49 15.75		13/64 7/32	5.1594 5.5562	45/64 23/32	17.8594 18.2562		15 16	.067 .060	1.778 1.587	
	0.080 0.090 0.100	2.032 2.286 2.540	0.630 0.640 0.650	16.00 16.26 16.51		15/64 1/4	5.9531 6.3500	47/64 3/4	18.6531 19.0500		17 18 19	.054 .048 .042	1.422 1.270 1.118	
	0.110	2.794 3.048	0.660	16.76 17.02		17/64 9/32 19/64	6.7469 7.1437 7.5406	49/64 25/32 51/64	19.4469 19.8437 20.2406		20 21	.042 .036 .033	.965	
	0.130 0.140	3.302 3.56	0.680 0.690	17.27 17.53		5/16 21/64	7.9375 8.3344	13/16 53/64	20.6375 21.0344		22 23	.030 .027	.793 .711	
	0.150	3.81 4.06	0.700	17.78 18.03		11/32 23/64	8.7312 9.1281	27/32 55/64	21.4312 21.8281		24 25 26	.024 .021 .018	.635 .559 .483	
	0.170 0.180	4.32 4.57	0.720 0.730	18.29 18.54		3/8 25/64	9.5250 9.9219	7/8 57/64	22.2250 22.6219		27 28	.016 .015	.432	
	0.190 0.200	4.83 5.08	0.740 0.750	18.80 19.05		13/32 27/64 7/16	10.3187 10.7156 11.1125	29/32 59/64 15/16	23.0187 23.4156 23.8125		29 30	.014	.356 .330	
	0.210	5.33 5.59	0.760	19.30 19.56		29/64 15/32	11.5094	61/64 31/32	24.2094 24.6062		31 32 33	.011 .010 .009	.279 .254 .229	
	0.230 0.240 0.250	5.84 6.10 6.35	0.780 0.790 0.800	19.81 20.07 20.32		31/64 1/2	12.3031 12.7000	63/64 1	25.0031 25.4001		34 35	.0082	.216	
	0.260 0.270	6.60 6.86	0.810 0.820	20.57 20.83							36 37	.007 .0064	.178 .168	
	0.280	7.11 7.37	0.830	21.08							38	.006	.152	
	0.300	7.62 7.87	0.850 0.860	21.59 21.84										
	0.320	8.13 8.38	0.870 0.880	22.10 22.35										
	0.340 0.350	8.64 8.89	0.890 0.900	22.61 22.86										
	0.360 0.370 0.380	9.14 9.40 9.65	0.910 0.920 0.930	23.11 23.37 23.62										
	0.390 0.400	9.93 9.91 10.16	0.930 0.940 0.950	23.88 24.13										
	0.410 0.420	10.41 10.67	0.960 0.970	24.38 24.64	1									
	0.430 0.440 0.450	10.92 11.18 11.43	0.980 0.990 1.000	24.89 25.15 25.40										
	21.00													

For Taper Dimensions in inches & millimeters see Page 7. 565

TAPER DIMENSIONS AND ELECTRODE CODING


CARY

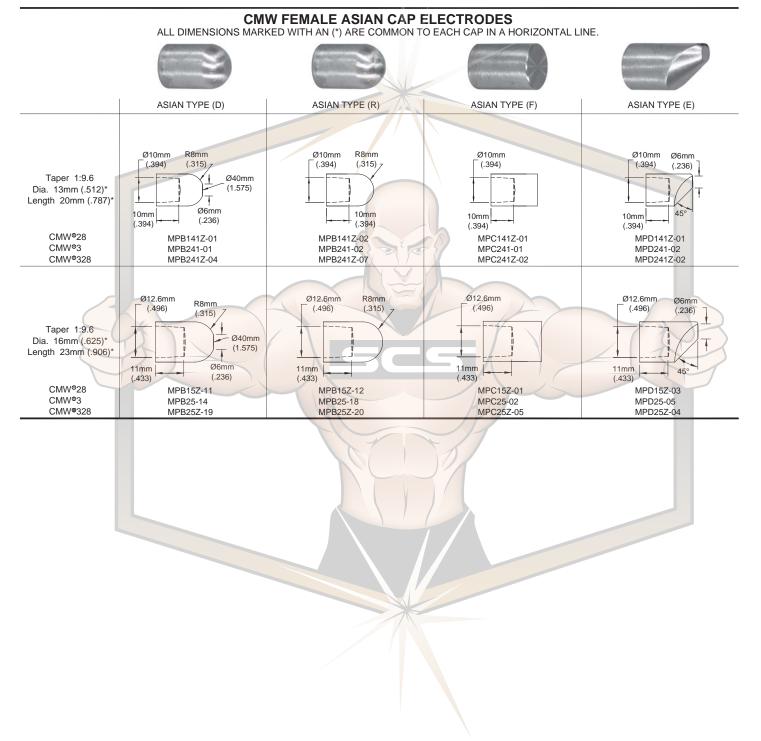
These economical, quick change caps are made of long-lasting, highly-efficient CMW[®]28, CMW[®]3, and CMW[®]328 copper alloys, precision manufactured to exacting tolerances in a wide range of standard configurations or to your special requirements for use on CMW shanks.



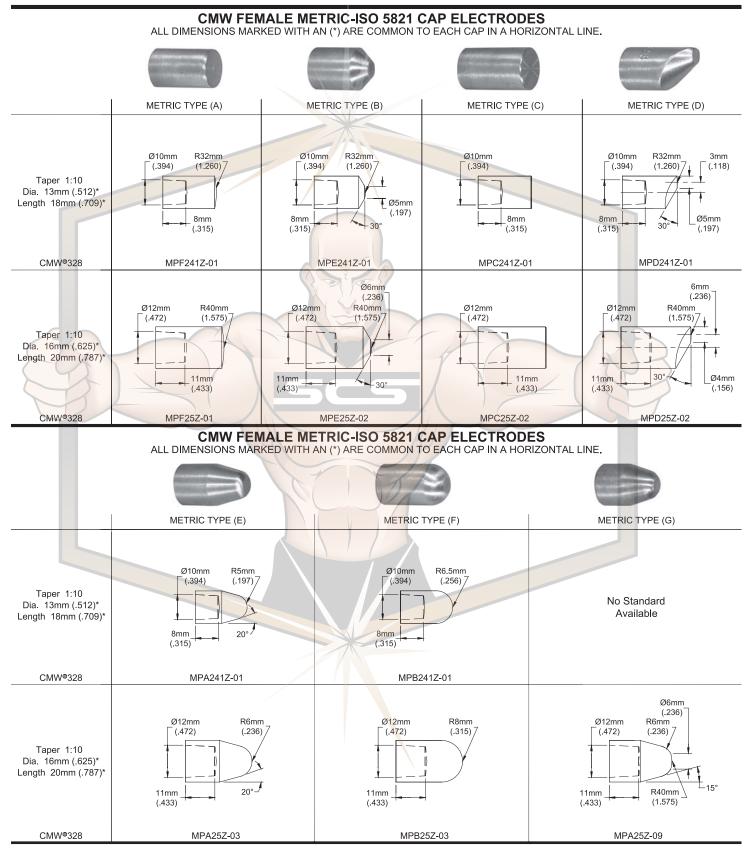
The CMW GCAP[®] electrode is the answer to welding galvanized steels. The GCAP's[®] revolutionary design, and precision manufacturing from CMW Engineering provides for no sticking from the very first weld. GCAP[®] electrode nuggets meet or exceed industry standards for high quality welds from the first weld through the life of the cap. This cap design made from R.W.M.A. class 2 material eliminates brass build-up by literally rolling the brass away. You will use

less electric power (up to 25% less) and still achieve superior welds due to GCAP^e design. Productivity will increase with up to 10 times more welds without dressing.

For best use of CMW GCAPS[®], a stepper program is recommended. Consult CMW application engineering.


U.S. Patent 49,954,687; 5,015,816; 5,126,528. Other patents pending.

ASIAN CAP ELECTRODES


These economical, quick change caps are made of long lasting, highly efficient CMW[®]28, CMW[®]3, CMW[®]328 copper alloy, precision manufactured to exacting tolerances in a wide range of standard configurations or to your special requirements.

565

These economical, quick change caps are made of long lasting, highly efficient CMW[®]328 copper alloy, precision manufactured to exacting tolerances in a wide range of standard configurations or to your special requirements.

SOUTHERN COPPER & SUPPLY COMPANY, INC. 800-289-2728

SHANKS FOR FEMALE CAP ELECTRODES

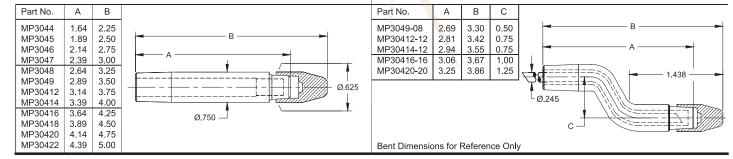
CMW shanks are precision manufactured from CMW®3 class 2 material to provide a high quality mount for cap type electrodes. They are designed for high strength and electrical conductivity.

*These shanks are shown with a blind water hole for cap replacement without shutting off water. Shanks with through water holes are available, by adding "TH" to the basic part number. Example: MP30212TH.

SHANKS FOR FEMALE CAP ELECTRODES

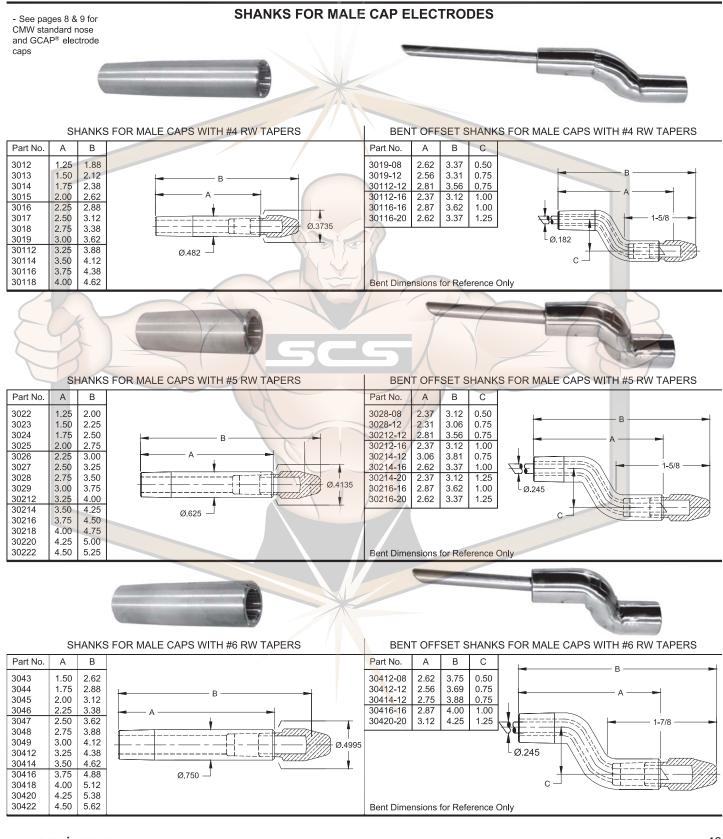
See pages 8 & 9 for CMW standard nose and GCAP® electrode caps

SHANKS FOR FEMALE CAPS WITH #4 RW TAPERS Part No. А В Part No. А В С MP3012 1 25 1.75 MP3019-08 2.62 3 28 0.50 2.00 MP3013 B 1.50 MP3019-12 2 56 3 22 0 75 MP3014 1.75 2.25 MP30112-12 2.81 3.47 0.75 MP3015 2.00 2.50 MP30112-16 2 37 3.03 1.00 MP30116-16 2.87 MP3016 2.25 2.75 3.53 1.00 MP3017 MP30116-20 2.60 2 50 3.00 3.28 1.25 1 438 7 Ø.400 MP3018 2 75 3.25 MP3019 L Ø 182 3.00 3.50 Ť MP30112 3 25 3.75 Ø 482 MP30114 3.50 4.00 C MP30116 3.75 4.25 MP30118 4 00 4 50 Bent Dimensions for Reference Only



SHANKS FOR FEMALE CAPS WITH #5 RW TAPERS BENT OFFSET SHANKS FOR FEMALE CAPS WITH #5 RW TAPERS Part No. В В С А Part No А MP3023 2.00 3.20 1.46 MP3029-08 2.58 0.50 MP3024 1.71 2.25 MP3029-12 2.60 3.12 0.75 MP3025 1.96 2.50 MP30212-12 2.77 3.44 0.75 MP3026 MP30212-16 3.00 1.00 2 21 2.75 MP30214-12 MP3027 3.00 2.46 3.66 0.75 MP3028 2.71 3.25 T MP30214-16 2.81 3.48 1.00 1.438 -35 MP3029 2.96 3.50 MP30216-16 2.83 3.49 1.00 Ø.502 MP30212 3.21 3.75 MP30216-20 2.77 3.43 1.25 Ø 245 MP30214 3.46 4.00 Ø.625 MP30216 3.71 4.25 С MP30218 3.96 4.50 MP30220 4.21 4.75 MP30222 4.46 5.00 Bent Dimensions for Reference Only

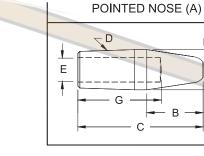
SHANKS FOR FEMALE CAPS WITH #6 RW TAPERS


BENT OFFSET SHANKS FOR FEMALE CAPS WITH #6 RW TAPERS

CMW shanks are precision manufactured from CMW[®]3 class 2 material to provide a high quality mount for cap type electrodes. They are designed for high strength and electrical conductivity.

SOUTHERN COPPER & SUPPLY COMPANY, INC. 800-289-2728

н


V.

DOME NOSE (B)

I

				-			1/2
4	4 RW TA	PER (D)				COMM	ION DIM
CMW [®]	CMW®	CMW®	Nose	1	Face	Major	Water
28	3	100	Length	~	Dia.	Dia.	Hole Dia
Class 1	Class 2	Class 3	В		Н	A	E
1111 🌔	3111	5111	13/64				
1112 🔪	3112	5112	1/4				
1113	3113	5113	1/4				
1114	3114	5114			1		
1115	3115	5115	1/4				
1116	3116	5116				VV	
1117	3117	5117		1	3/16	.482	9/32
1118	3118	5118	1/4				1
1119	3119	5119					
11112	31112	51112		1			
11114	31114	51114	1/4				
11116	31116	51116					
11118	31118	51118	1/4	1			
Ę	5 RW TA	PER (D)				COMN	ION DIM

	100
ION DIME	VSIONS
Water	Overall

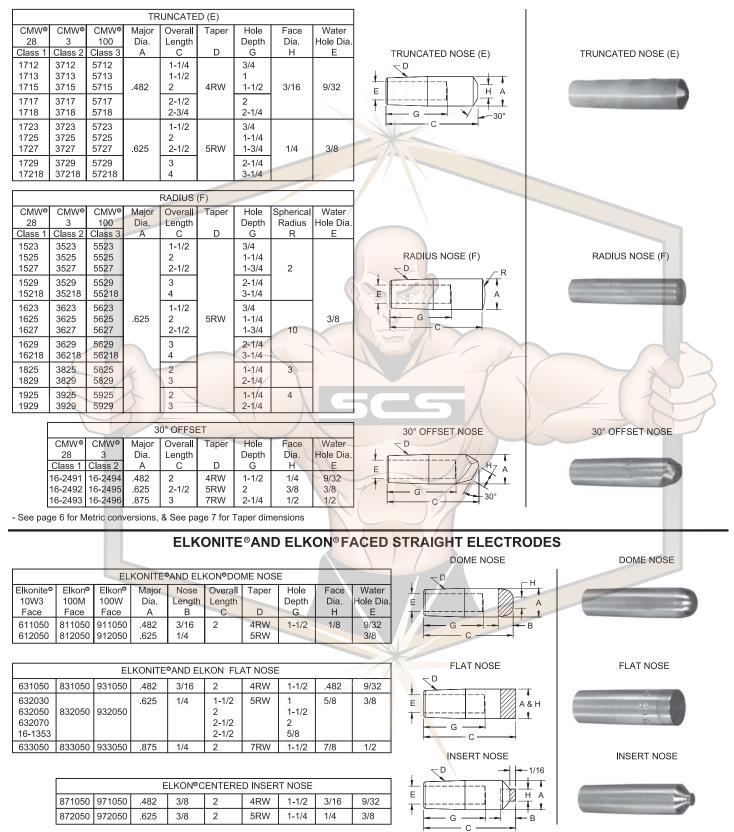
COMM				_	
Major Dia. A	Water Hole Dia. E	Overall Length C	Hole Depth G	-	
	Ŋ	1 1-1/4 1-1/2	5/8 3/4 1		
(U		1-3/4 2 2-1/4	1-1/4 1-1/2 1-3/4		
.482	9/32	2-1/2 2-3/4 3	2 2-1/4 2-1/2		•
		3-1/4 3-1/2 3-3/4	2-3/4 3 3-1/4		
		4	3-1/2		

	4 RW TA	PER (D)		
CMW®	CMW®	CMW®	Nose	
28 Class 1	Class 2	100 Class 3	Length B	
1211 1212 1213	3211 3212 3213	5211 5212 5213	3/8 3/8 5/8	
1214 1215 1216	3214 3215 3216	5214 5215 5216	3/4	
1217 1218 1219	3217 3218 3219	5217 5218 5219	3/4	
12112 12114 12116	32112 32114 32116	52112 52114 52116	3/4	
12118	32118	52118	3/4	1

:	5 RW TAPER (D)				COMMON DIMENSIONS				5 RW TAPER (D)				
1122 1123 1124	3122 3123 3124	5122 5123 5124						1-1/4 1-1/2 1-3/4	3/4 3/4 1	1222 1223 1224	3222 3223 3224	5222 5223 5224	1/2 3/4 3/4
1125 1126 1127	3125 3126 3127	5125 5126 5127						2 2-1/4 2-1/2	1-1/4 1-1/2 1-3/4	1225 1226 1227	3225 3226 3227	5225 5226 5227	1-1/8
1128 1129 11212	3128 3129 31212	5128 5129 51212	3/8		1/4	.625	3/8	2-3/4 3 3-1/4	2 2-1/4 2-1/2	1228 1229 12212	3228 3229 32212	5228 5229 52212	1-1/8
11214 11216 11218	31214 31216 31218	51214 51216 51218						3-1/2 3-3/4 4	2-3/4 3 3-1/4	12214 12216 12218	32214 32216 32218	52214 52216 52218	1-1/8
11220 11222	31220 31222	51220 51222						4-1/4 4-1/2	3-1/2 3-3/4	12220 12222	32220 32222	52220 52222	1-1/8

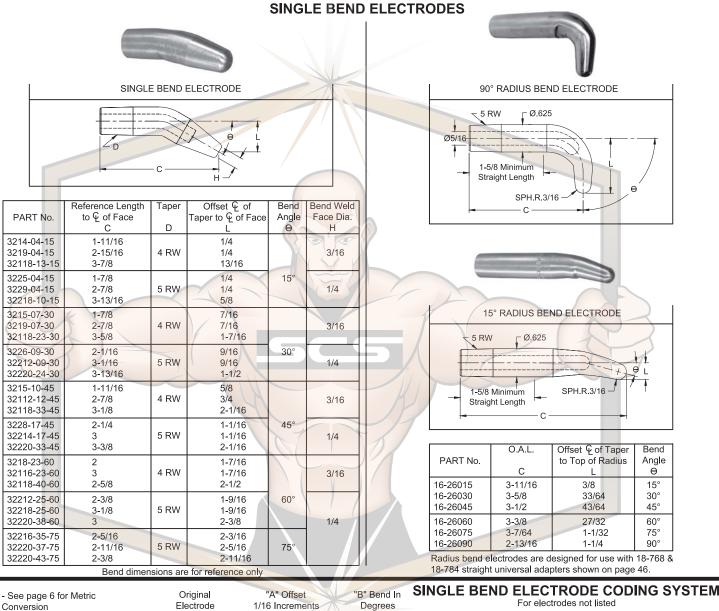
*Electrodes of other tapers and alloys available upon request.

STRAIGHT ELECTRODES

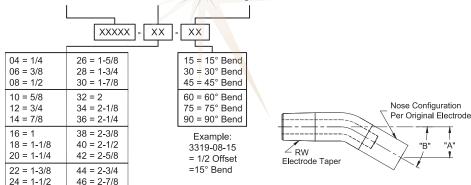

		1.		9)
	FLAT NOSE (C)											OFFS	SET NOSI	E (D)	
		<u>_</u> D G	A	& H											1
Γ	4	4 RW TAF	PER (D)			CC	MMON D	IMENSIO	NS			4 R'	W TAPEF	R (D)	
	CMW [®] 28 Class 1	CMW [®] 3 Class 2	CMW [®] 100 Class 3	Face Dia. H		Major Dia. A	Water Hole Dia. E	Overall Length C	Hole Depth G	H	CMW [®] 28 Class 1	CMW [®] 3 Class 2	CMW [®] 100 Class 3	Nose Angle F	Face Dia. H
	1311 1312 1313	3311 3312 3313	5311 5312 5313				50	1 1-1/4 1-1/2	5/8 3/4 1	/	1411 1412 1413	3411 3412 3413	5411 5412 5413	45° 40° 30°	3
	1314 1315 1316	3314 3315 3316	5314 5315 5316		-	P		1-3/4 2 2-1/4	1-1/4 1-1/2 1-3/4		1414 1415 1416	3414 3415 3416	5414 5415 5416	30°	
	1317 1318 1319	3317 3318 3319	5317 5318 5319	.482		.482	9/32	2-1/2 2-3/4 3	2 2-1/4 2-1/2		1417 1418 1419	3417 3418 3419	5417 5418 5419	30°	3/16
	13112 13114 13116 13118	33112 33114 33116 33118	53112 53114 53116 53118					3-1/4 3-1/2 3-3/4	2-3/4 3 3-1/4		14112 14114 14116 14118	34112 34114 34116 34118	54112 54114 54116 54118	30°	
L	13110	33110	53110					4	3-1/2	J	14110	34110	54110	30	
	Ę	5 RW TAP	PER (D)			CC	DMMON D	IMENSIO	NS			5 R'	W TAPEF	R (D)	
	1322 1323 1324	3322 3323 3324	5322 5323 5324					1-1/4 1-1/2 1-3/4	3/4 3/4 1		1422 1423 1424	3422 3423 3424	5422 5423 5424	40° 40° 30°	
	1325 1326 1327	3325 3326 3327	5325 5326 5327					2 2-1/4 2-1/2	1-1/4 1-1/2 1-3/4		1425 1426 1427	3425 3426 3427	5425 5426 5427	30°	
	1328 1329 13212	3328 3329 33212	5328 5329 53212	5/8		.625	3/8	2-3/4 3 3-1/4	2 2-1/4 2-1/2		1428 1429 14212	3428 3429 34212	5428 5429 54212	30°	1/4
	13214 13216 13218	33214 33216 33218	53214 53216 53218					3-1/2 3-3/4 4	2-3/4 3 3-1/4		14214 14216 14218	34214 34216 34218	54214 54216 54218	30°	
	13220 13222	33220 33222	53220 53222					4-1/4 4-1/2	3-1/2 3-3/4		14220 14222	34220 34222	54220 54222	30°	

*Electrodes of other tapers and alloys available upon request.

- Electrodes of other tapers and alloys available upon request. For other ELKONITE[®] and ELKON[®] materials see page 5 and for other recommended uses see the chart on page 76. Electrodes faced with material other than those shown on this page are available to special order.

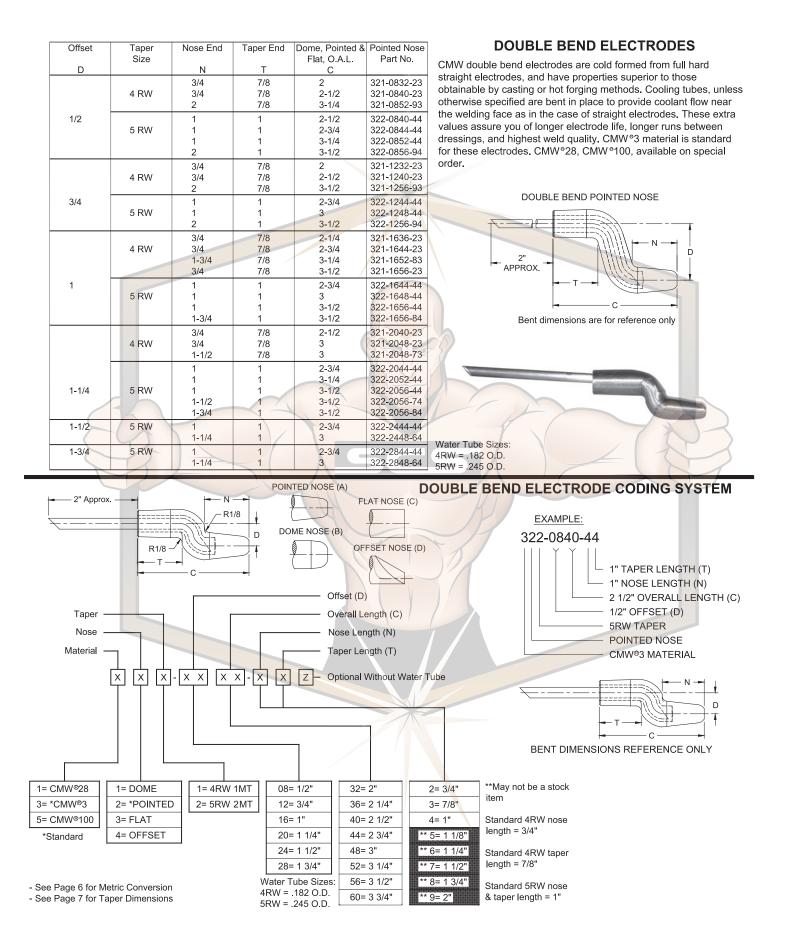


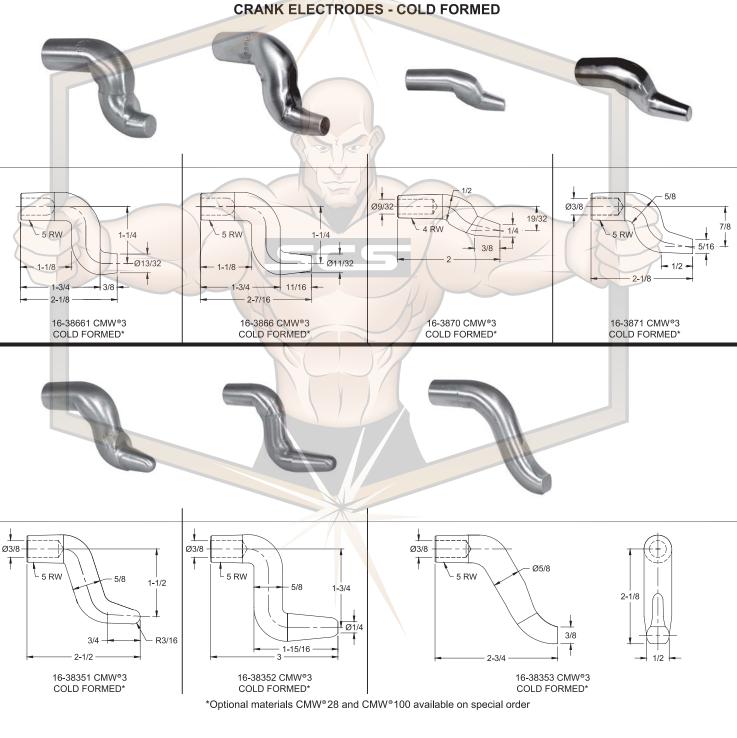
SINGLE BEND ELECTRODES



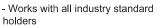
CMW^o3 single bend electrodes are cold formed from full hard straight electrodes, and have properties superior to those obtained by casting or hot forging methods. Cooling tubes are bent in place, if requested, to provide water flow as near to the welding face as in the case of straight electrodes. These extra values assure you a more efficient, less costly electrode for gun welders and special offset welding applications.

Furnished with water tubes as specials to your order. Other nose types available to order. For dimensions not shown here see straight electrode (round water hole) measurements on page 14, 15, & 16. CMW^o28 material available on special order.





DOUBLE BEND ELECTRODES



- Very strong bend electrodes for higher force applications
- Bent & Offset electrodes are for hard to reach locations
- Long lasting heavy duty electrodes

- Use with 4 & 5 R.W.M.A Holders
- Bent dimensions are for reference only

- Electrical conductivity up to 85% IACS for cold formed crank electrodes

- Rockwell hardness up to 83 HRB for cold formed crank electrodes
- Works with all industry standard

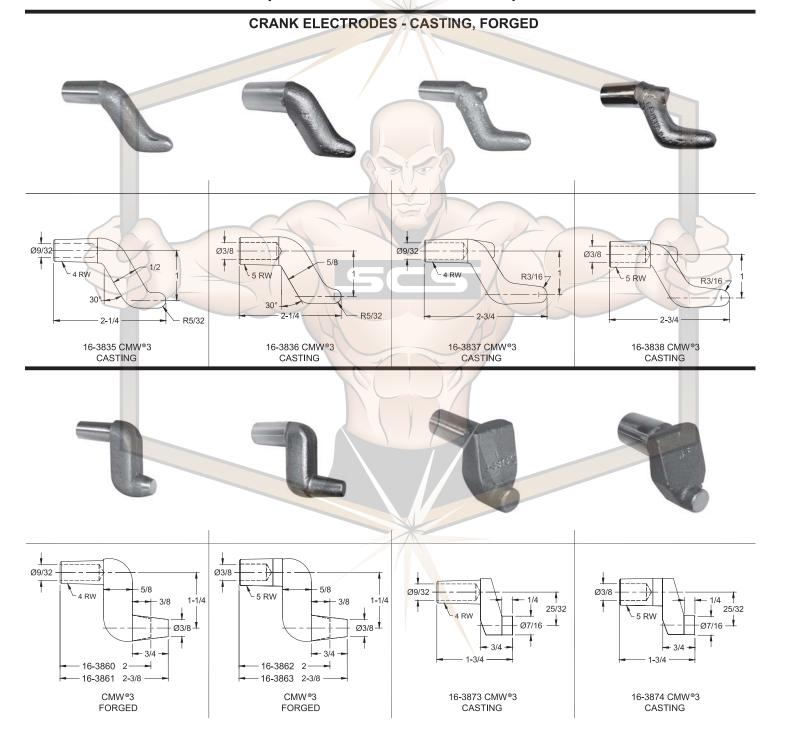
FEATURES AND SPECIFICATIONS

CRANK ELECTRODES - COLD FORMED

565

FEATURES AND SPECIFICATIONS

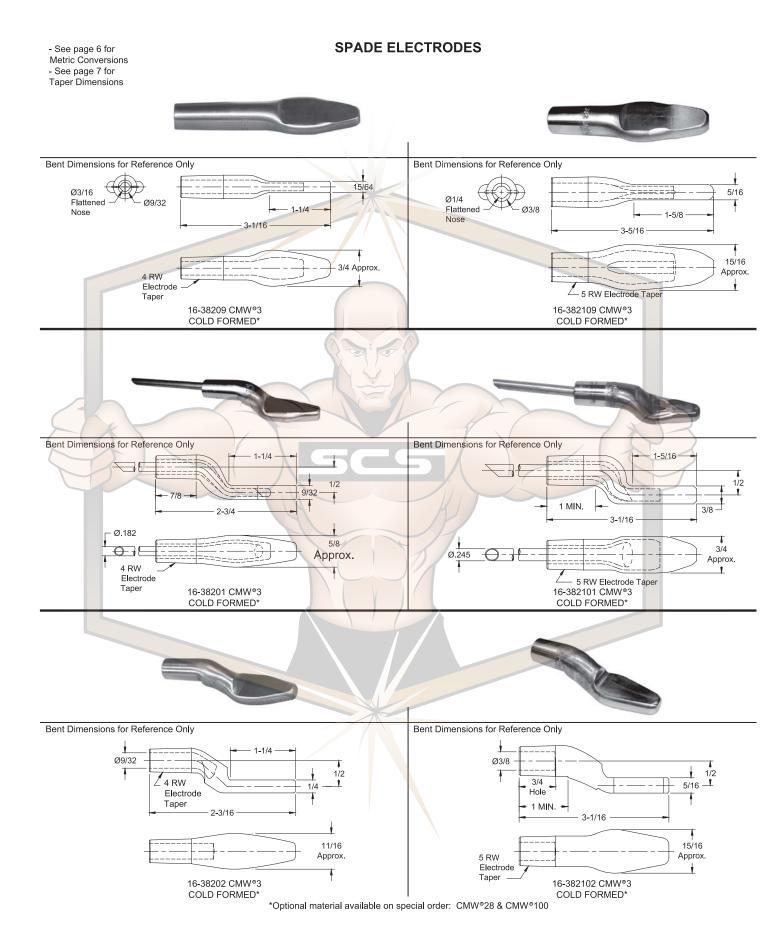
- Very strong bend electrodes for higher force applications
- Offset electrodes are for hard to reach locations
- Long lasting heavy duty electrodes


- Can be used in many job shop applications

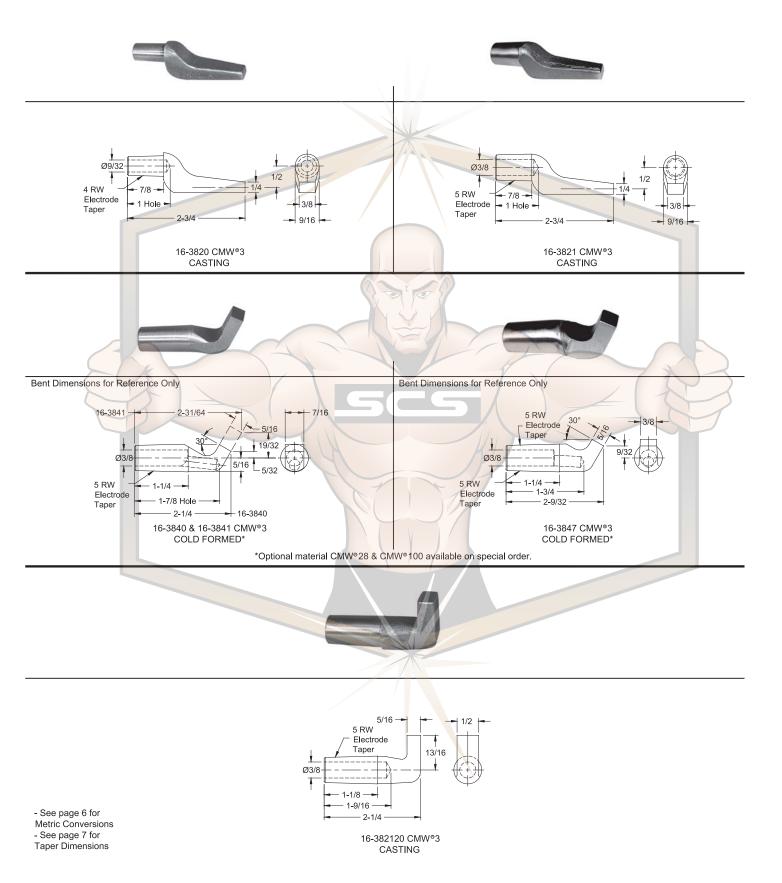
- Works with all industry standard holders

- Use with 4 & 5 R.W.M.A Holders

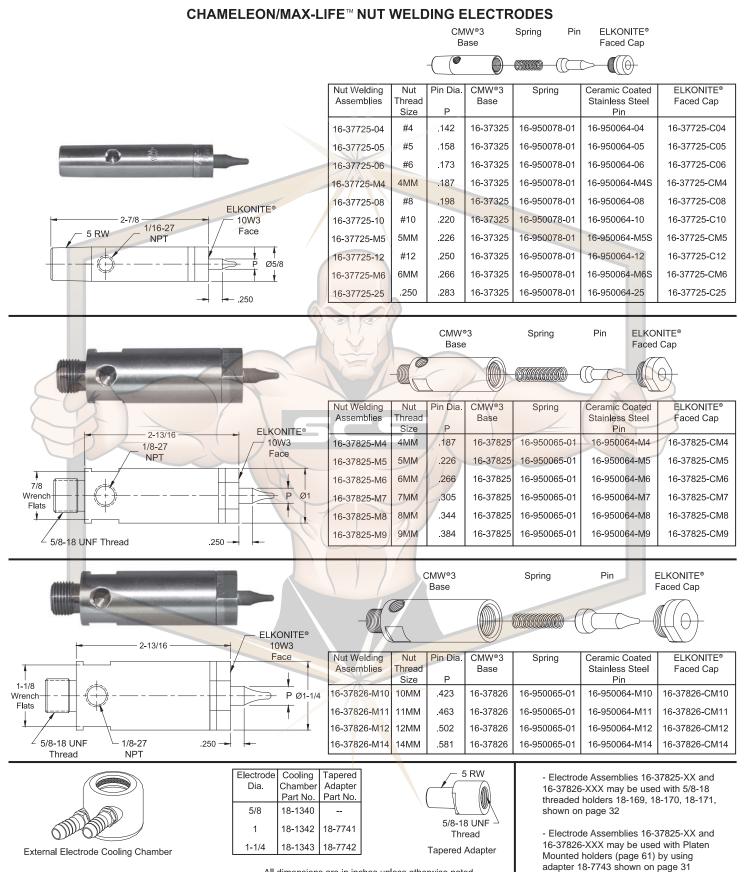
- Electrical conductivity up to 80% IACS for castings & forged crank electrodes


- Rockwell hardness up to 70 HRB for castings & forged crank electrodes

SPADE ELECTRODES



GUN ELECTRODES


565

CHAMELEON/MAX-LIFE[™] NUT WELDING ELECTRODES

SUPPLY COMPANY, INC. 800-289-2728

SOUTHERN COPPER &

All dimensions are in inches unless otherwise noted

CHAMELEON/MAX-LIFE[™] STUD WELDING ELECTRODES

.

SOUTHERN **COPPER & SUPPLY** COMPANY, INC. 800-289-2728

ELKONITE®

Faced Cap

16-37325-C116

16-37325-C132

16-37325-C140

16-37325-C169

16-37325-C169

16-37325-C191

16-37325-C204

16-37325-C220

16-37325-C243

16-37325-C254

ELKONITE[®]

Faced Cap

16-37525-C243

16-37525-C254

16-37525-C320

16-37525-C320

16-37525-C380

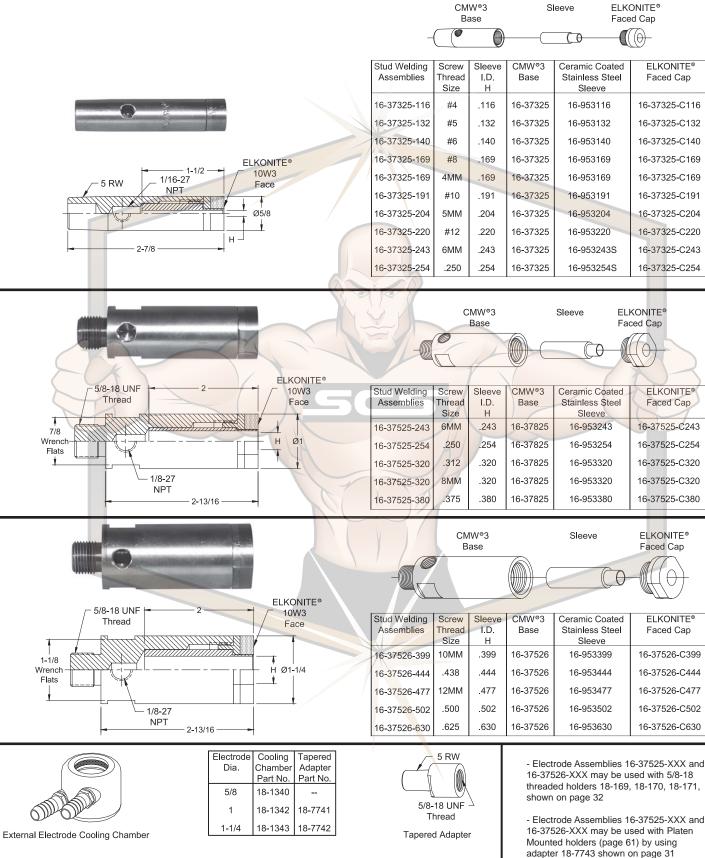
ELKONITE®

Faced Cap

ELKONITE[®]

Faced Cap

16-37526-C399

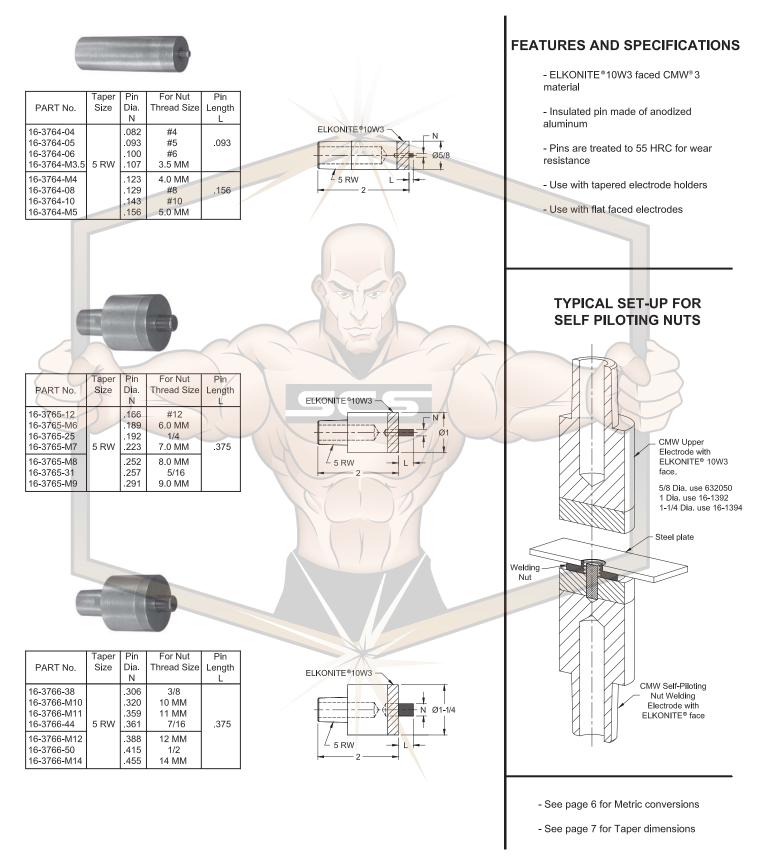

16-37526-C444

16-37526-C477

16-37526-C502

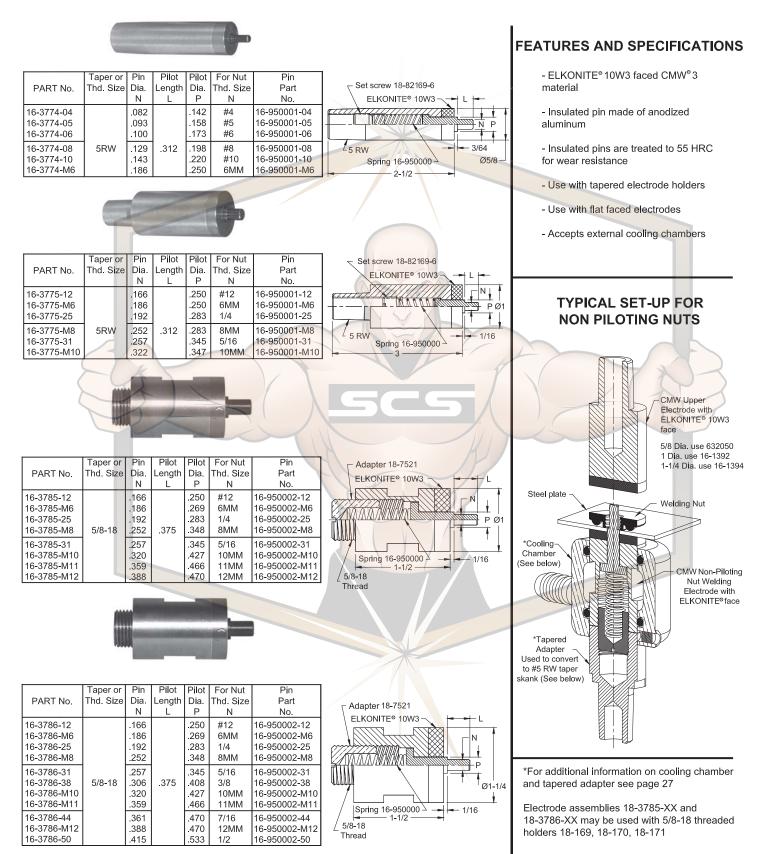
16-37526-C630

θ


CHAMELEON/MAX-LIFE[™] STUD WELDING ELECTRODES

- Electrode Assemblies 16-37525-XXX and 16-37526-XXX may be used with Platen

SELF-PILOTING NUT WELDING ELECTRODES

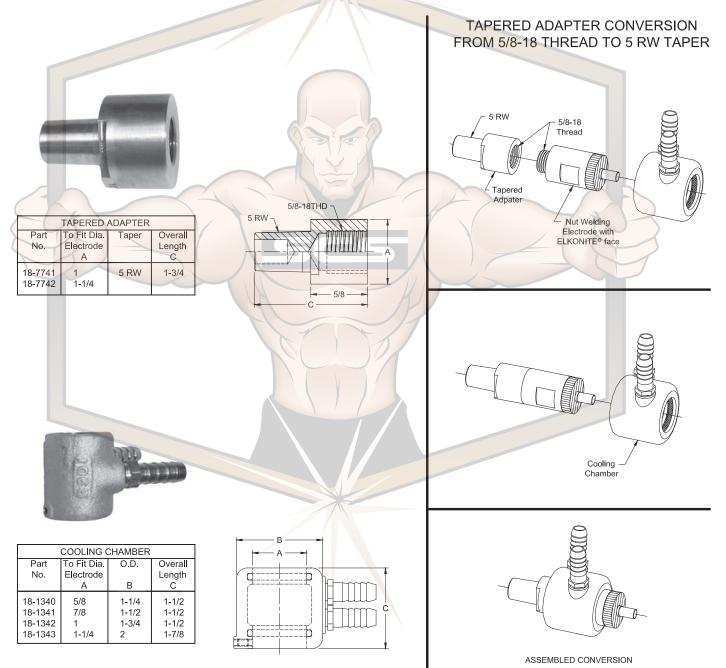


NON-PILOTING NUT WELDING ELECTRODES

NON-PILOTING NUT WELDING ELECTRODES

ELECTRODE COOLING CHAMBERS & TAPERED ADAPTERS

SOUTHERN COPPER & SUPPLY COMPANY, INC. 800-289-2728

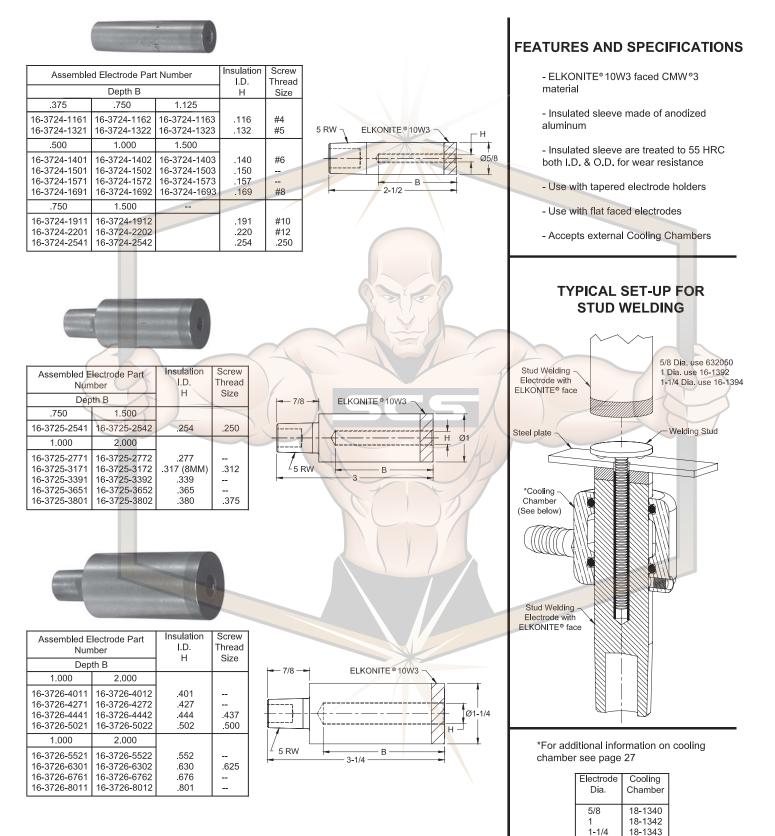

FEATURES AND SPECIFICATIONS

- Cooling Chamber recommended for additional cooling capacity on internally cooled applications

- Cooling Chamber is designed to provide supplementary cooling in special, hard to cool applications

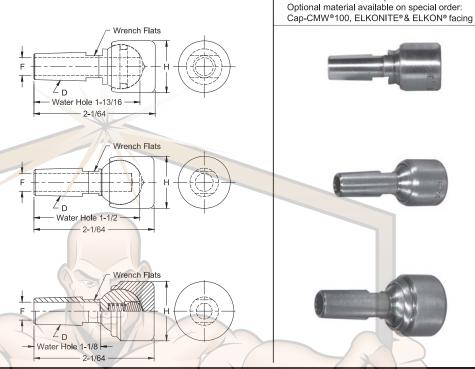
- Securely sealed and locked in position with allen head set screw

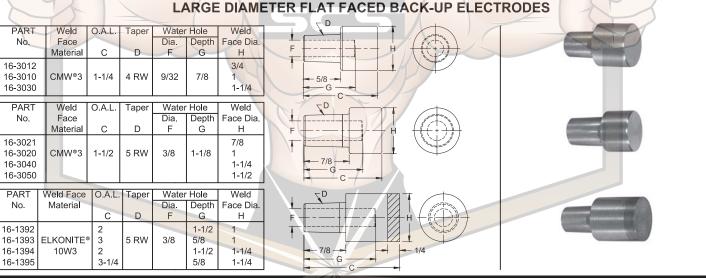
- Tapered Adapter converts 5/8-18 thread to 5 RW tapers
- Use with Stud/Nut welding applications


WELDING ELECTRODE ACCESSORIES

STUD WELDING ELECTRODES

STUD WELDING ELECTRODES

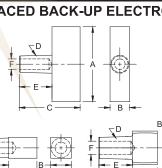



Standard material: Shank - CMW®3

Cap - CMW®3

SWIVEL HEAD BACK-UP ELECTRODES

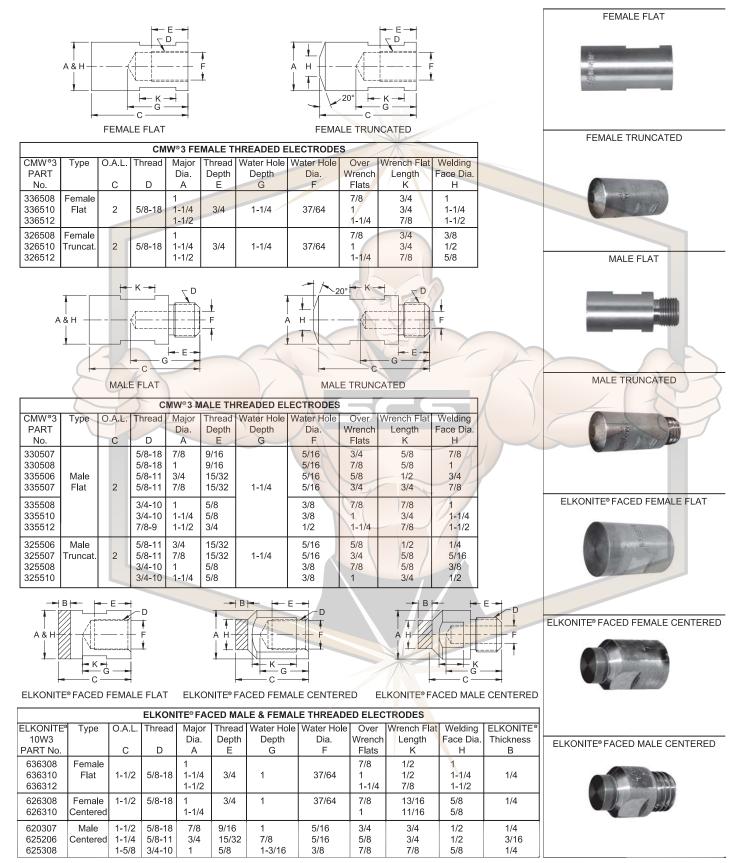
PART Water Face Taper Туре Hole Dia. No. Dia. D н F 4 RW 16-2304 9/32 7/8 16-2305 5 RW 3/8 16-2302 4 RW 9/32 1 Thru 16-2303 5 RW 3/8 hole with "O' 16-2300 4 RW 9/32 1-1/4 ring 16-2301 5 RW 3/8 16-2306 5 RW 3/8 1-1/2 PART Taper Water Face Туре Hole Dia. No. Dia. D Н F 16-2314 4 RW 9/32 7/8 16-2315 5 RW 3/8 16-2312 4 RW 9/32 1 Blind 16-2313 5 RW 3/8 hole 9/32 16-2310 4 RW 1-1/4 16-2311 5 RW 3/8 16-2316 5 RW 3/8 1-1/2 PART Water Face Taper Туре Hole Dia. No. Dia. D F н 16-23129 4 RW 9/32 1 Blind 5 RW 16-23139 3/8 hole 16-23109 4 RW 9/32 1-1/4 with 16-23119 5 RW 3/8 spring 16-23169 4 RW 9/32 1-1/2 and bal 16-23179 3/8 5 RW



SQUARE & RECTANGULAR FACED BACK-UP ELECTRODES

E

PART	Weld	O.A.L.	Taper	Shank	Water	Weld Face	Weld Face
No.	Face			Length	Hole Dia.	Lgth.	Width
	Material	С	D	E	F	А	В
16-382158			4 RW		9/32	1-1/2	1/2
16-3111	CMW®3	1-5/8	4 RW	7/8	9/32	2	5/8
16-382160	Casting		5 RW		3/8	1-1/2	1/2
16-3121	-		5 RW		3/8	2	5/8
PART	Weld	O.A.L.	Taper	Shank	Water	Weld Face	Weld Face
No.	Face			Length	Hole Dia.	Lgth.	Width
	Material	С	D	E	F	A	В
16-3110	CMW®3	1-1/2	4 RW	13/16	9/32	1/2	1/2
16-3120	Cold	1-3/4	5 RW	7/8	3/8	5/8	5/8
16-384110	Formed	1-5/8	5 RW	7/8	3/8	15/16	1/2


Other tapers and alloys available to special order

THREADED ELECTRODES

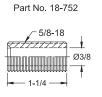
THREADED ELECTRODES

ADAPTERS

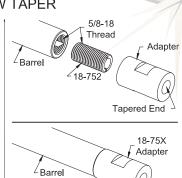
ADAPTERS

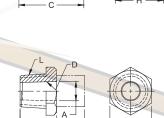
1/2

Μ

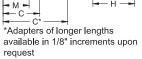

	MALE TAPER TO FEMALE TAPER ADAPTERS												
	М	ale Tape	r	Female	e Taper								
Adapter	Size	Minor	Dia.	Size	Major	Length	Hex. Over	Overall					
Part No.		Dia.	at 1/2		Dia.	Under Head	Flats	Length					
	L	J	K	D	A	M	Н	С					
18-741	5 RW	.588	.613	4 RW	.463	7/8	7/8	1-3/16					
18-742	7 RW	.819	.844	5 RW	.625	1-3/16	1	1-1/2					
18-7414	6 RW	.706	.731	5 RW	.625	7/8	1	1-3/16					
18-7415	4 RW	.438	.463	5 RW	.625	5/8	7/8	1-3/4					
18-7416	5 RW	.588	.613	6 RW	.750	7/8	1	2-1/4					

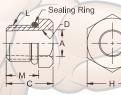
	MALE PIPE THREAD TO FEMALE TAPER ADAPTERS											
Adapter	Male Thd.	Female Ta	per	0	Hex. Over.	Overall						
Part No.	Size	Size	Major Dia.	Under Head	Flats	Length						
	L	D	A	М	Н	С						
18-746-07	1/2-14 pipe	4 RW	.463	5/8	1	7/8						
18-747-07	1/2-14 pipe	5 RW	.625	5/8	1	7/8						
18-7465-07	1/2-14 pipe	5 RW Male Cap	.414	9/16	7/8	7/8						
18-748-06	5/8-14 pipe	4 RW	.463	9/16	1	3/4						
18-749-06	5/8-14 pipe	5 RW	.625	9/16	1	3/4						
18-756-09	3/4-14 pipe	4 RW	.463	7/8	1-1/4	1-1/8						
18-757-09	3/4-14 pipe	5 RW	.625	7/8	1-1/4	1-1/8						
18-7576-09	3/4-14 pipe	6 RW	.750	7/8	1-1/4	1-1/8						
					1.21	NZ (

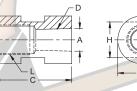

MALE THREAD TO FEMALE TAPER ADAPTERS							
Adapter	Male Thd.	Female Taper		Length Hex or Dia.		Overall	Sealing
Part No.	Size	Size	Major Dia.	Under Head	Over. Flats	Length	Ring Part
		D	A	M	H	C	No.
18-750	5/8-18	4 RW	.463	9/16	7/8 Hex	13/16	18-10060-11
18-751	5/8-18	5 RW	.625	9/16	1 Hex	1-11/16	18-10060-11
18-755*	3/4-10	5 RW	.625	9/16	1 Dia.	1-9/16	18-10060-12
18-770	7/8-14	4 RW	.463	5/8	1 Hex	13/16	18-76460
18-771	7/8-14	5 RW	.625	5/8	1 Hex	13/16	18-76460
18-7743	1-14	5/8-18 Thd.	20	5/8	1-1/4 Hex	1	18-10060-17
18-785	1-14	4 RW	.463	9/16	1-1/4 Hex	13/16	18-10060-17
18-786	1-14	5 RW	.625	9/16	1-1/4 Hex	13/16	18-10060-17
18-7863	1-14	6 RW	.750	3/4	1-1/4 Hex	1-3/4	18-10060-17
18-787	1-14	7 RW	.875	3/4	1-1/4 Hex	2-1/8	18-10060-17
18-7875	1-14	5 RW	.625	9/16	1-1/4 Dia.	11/16	18-10060-17
18-7876	1-14	6 RW	.750	5/8	1-1/4 Dia.	7/8	18-10060-17


FEMALE THREAD TO FEMALE TAPER ADAPTERS						
Adapter	Female	Female Taper		Outside	Over Wrench	Overall
Part No.	Thd. Size	Size	Major Dia	Dia.	Flats	Length
		D	Â	В	Н	С
18-753	5/8-18	4 RW	.475	1	3/4	1-5/8
18-754	5/8-18	5 RW	.625	1	3/4	1-5/8
18-7591	3/4-10	4 RW	.463	1-1/4 Hex.	1-1/4	1-3/4
18-7592	3/4-10	5 RW	.625	1-1/4 Hex.	1-1/4	1-3/4

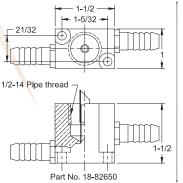
CONVERSION FROM 5/8-18 THREAD INTO 4, 5, 6, **RW TAPER**

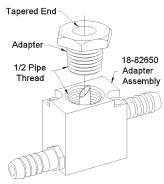



Threaded adapter used with tapered adapter to convert holder to use tapered electrodes.



- D A


*This part has 3/4" wrench flats



See page 6 for Metric Conversions

See page 7 for Taper Dimensions See page 34 for ejector type adapters

CONVERSION FROM THREADED ADAPTER INTO 4, 5, 6, RW TAPER

SOUTHERN COPPER & SUPPLY COMPANY, INC. 800-289-2728

1

100 SERIES TAPERED HOLDER						
Part No.	Major	Barrel	Barrel	RW	Engagement	
Holder	Taper Dia.	Dia.	Length	Taper	With Std. Elect.	
Assy.	A	В	С	D	E	
18-101 18-102	.463	3/4 7/8		4 RW	1/2	
18-102	.403	1		4 1. 10	1/2	
18-104		1-1/4	3			
18-106		1				
18-107	.625	1-1/4		5 RW	3/4	
18-108		1-1/2				
18-111		3/4				
18-112	.463	7/8		4 RW	1/2	
18-113		1				
18-114		1-1/4				
18-116		1	8			
18-117	.625	1-1/4		5 RW	3/4	
18-118		1-1/2				
18-119	.875	1-1/4		7 RW	1-1/8	
18-120		1-1/2				
18-131		3/4				
18-132	.463	7/8		4 RW	1/2	
18-133		1				
18-134		1-1/4	12			
18-136		1				
18-137	.625	1-1/4		5 RW	3/4	
18-138		1-1/2				

25/32 C	

18-172 1 1-1/4 8 7/8-14 9/16 18-173 18-174 1-1/2 18-175 1-1/4 1-14 3/4 1-1/2 18-176 See available adapters in table below.

100 SERIES THREADED HOLDER

Barrel

Length

С

Size

D

5/8-18

Barrel

Dia.

В

1-1/4

1-1/2

1

Part No.

Holder

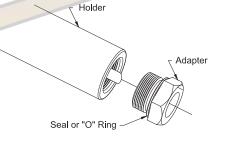
Assy.

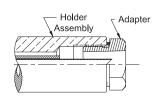
18-169

18-170

18-171

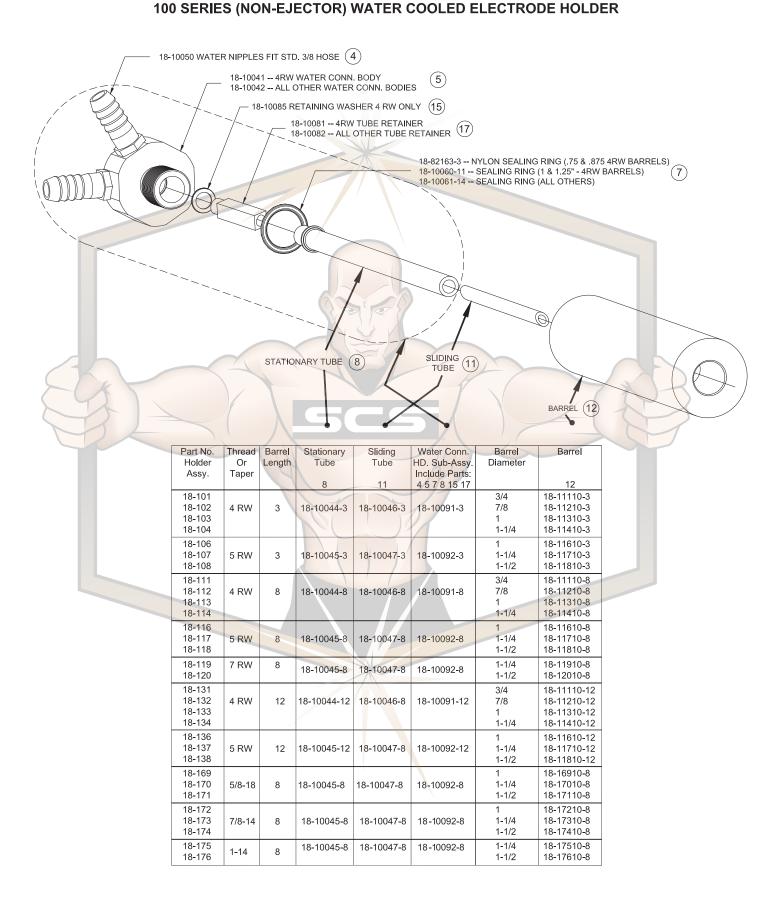
ADAPTERS USED WITH THREADED HOLDERS

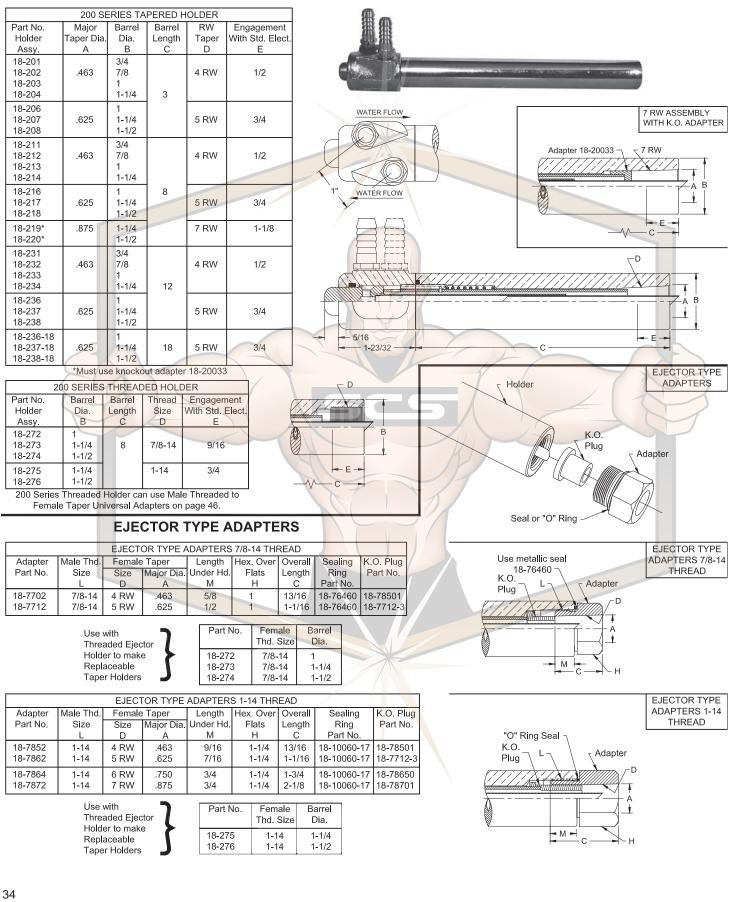

Thread Engagement With


Std. Electrode

Е

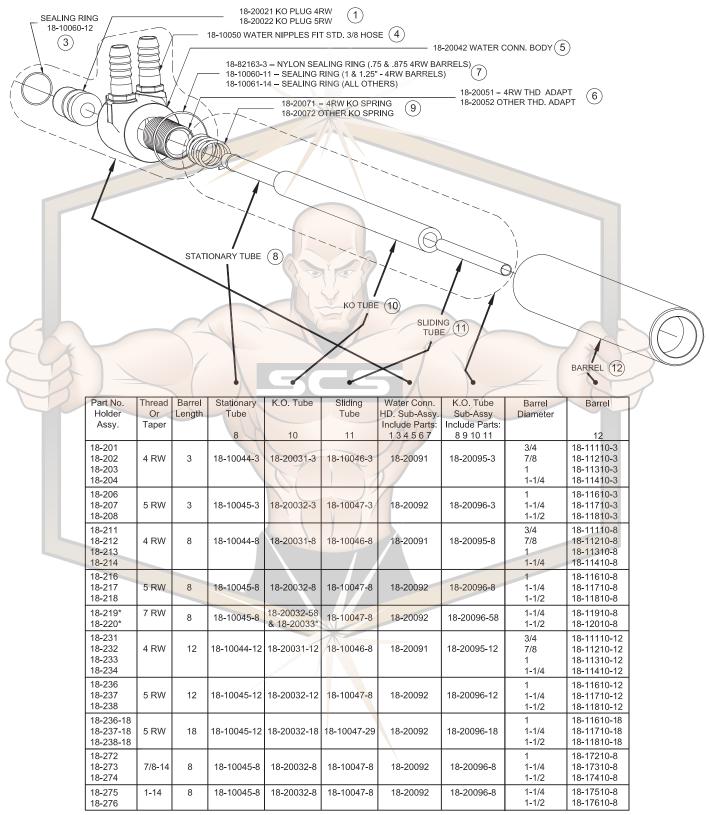
9/16


100 SERIES THREADED HOLDER ADAPTERS							
Holder Assembly No.		Adapter Part No.	Page No.	Attachment Description			
18-169 18-170 18-171	Use with	18-750 18-751 18-752 18-811	31 31 31 48	4 RW Female 5 RW Female 5/8-18 M. Thread #1 Size Nu-Twist [®]			
18-172 18-173 18-174	Use with	18-770 18-771	31 31	4 RW Female 5 RW Female	May also be used with universal Adapters having 7/8-14 Male thread See page 46		
18-175 18-176	Use with	18-785 18-786 18-7863 18-787 18-812	31 31 31 31 48	4 RW Female 5 RW Female 6 RW Female 7 RW Female #2 Size Nu-Twist [®]	May also be used with universal Adapters having 1-14 Male thread See page 46		


COMPANY, INC. 800-289-2728

200 SERIES (EJECTOR) WATER COOLED ELECTRODE HOLDER

SOUTHERN COPPER & SUPPLY COMPANY, INC. 800-289-2728

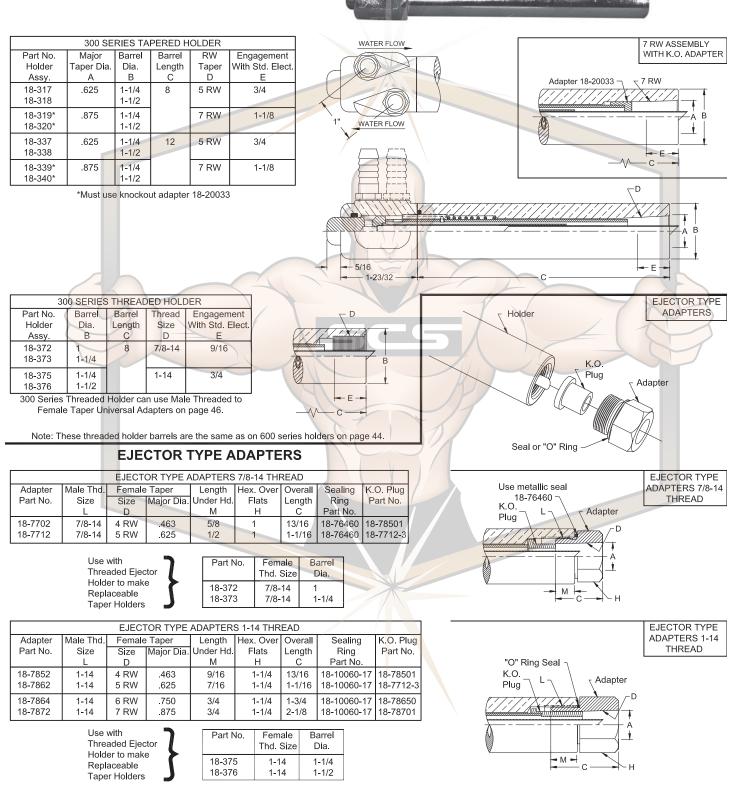


200 SERIES (EJECTOR) WATER COOLED ELECTRODE HOLDER

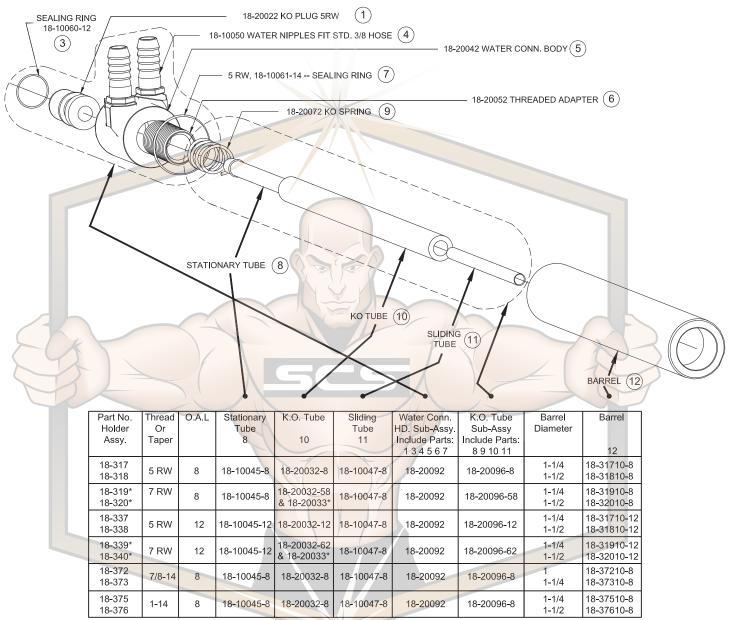
200 SERIES (EJECTOR) WATER COOLED ELECTRODE HOLDER

*Must use knockout adapter 18-20033

300 SERIES PREMIUM (EJECTOR) WATER COOLED ELECTRODE HOLDERS



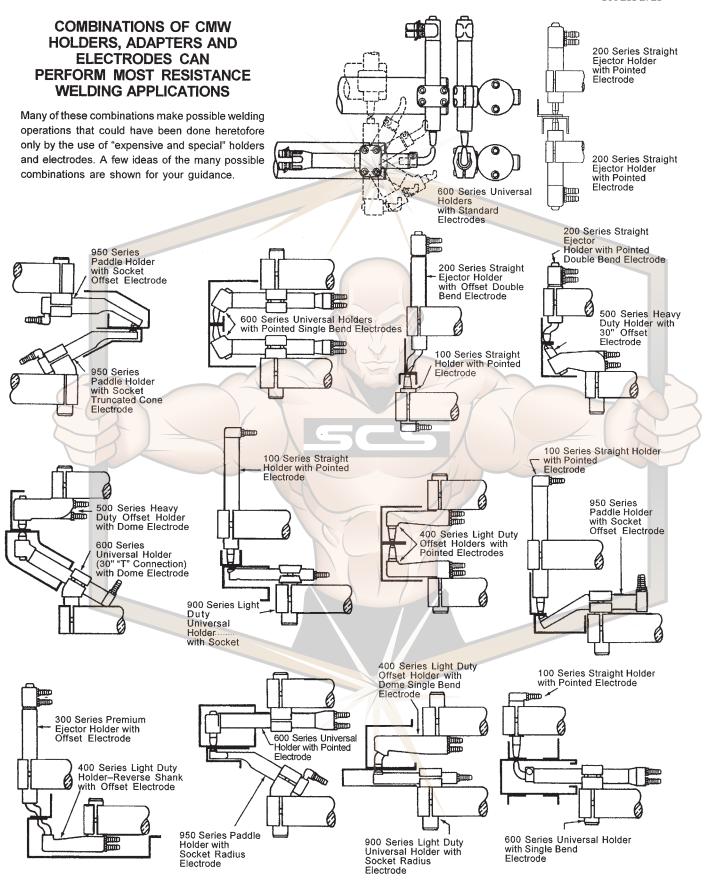
SOUTHERN COPPER & SUPPLY COMPANY, INC. 800-289-2728


300 SERIES PREMIUM (EJECTOR) WATER COOLED ELECTRODE HOLDER

CMW Premium holder barrels are made from high strength CMW^o3 material, centerless ground within .002" tolerance on diameter and nickel plated to resist wear and assure uniform contact resistance of a low magnitude

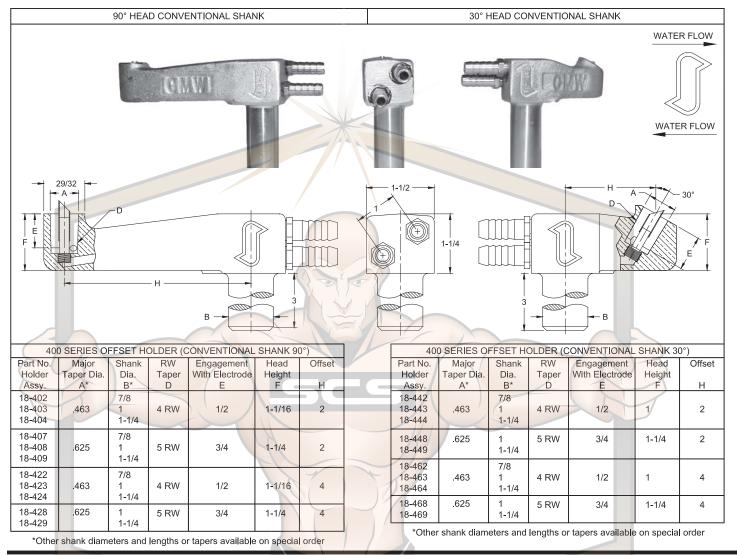
COMPANY, INC. 800-289-2728

300 SERIES PREMIUM (EJECTOR) WATER COOLED ELECTRODE HOLDER

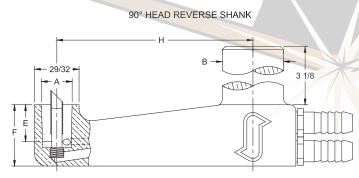


*Must use knockout adapter 18-20033

TYPICAL SET-UP COMBINATIONS USING CMW WELDING PRODUCTS



SOUTHERN COPPER & SUPPLY COMPANY, INC. 800-289-2728

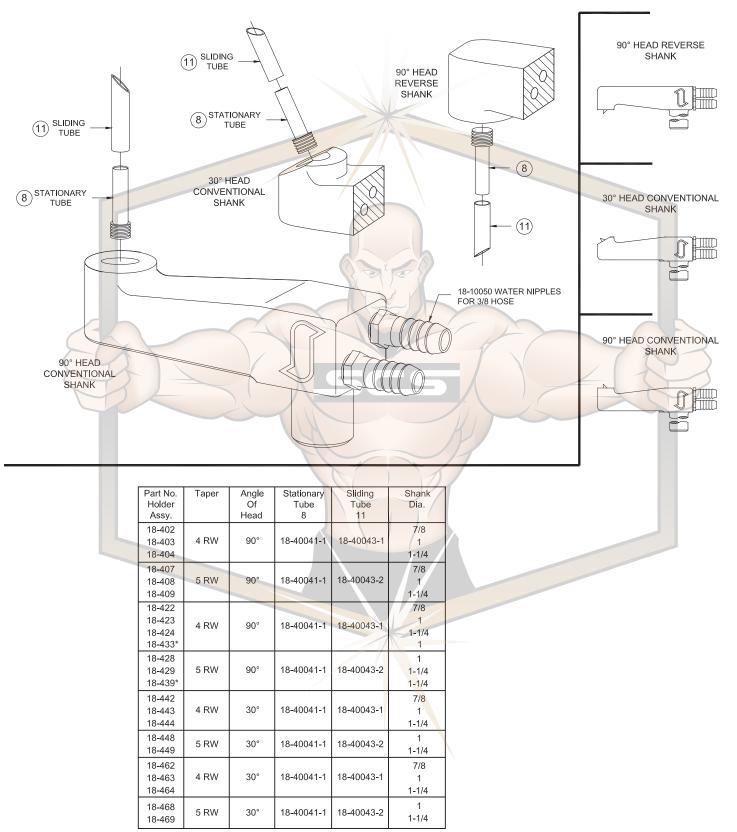


400 SERIES OFFSET (NON-EJECTOR) WATER COOLED ELECTRODE HOLDERS

400 SERIES OFFSET (NON-EJECTOR) WATER COOLED ELECTRODE HOLDERS

	400 SERIES OFFSET HOLDER (REVERSE SHANK 90°)											
Part No.	Major	Shank	RW	Engagement With	Head	Offset						
Holder	Taper Dia.	Dia.	Taper	Electrode	Height							
Assy.	A*	В*	Ď	E	F	Н						
18-433	.463	1	4 RW	1/2	1-1/16	4						
18-439	.625	1-1/4	5 RW	3/4	1-1/4	4						

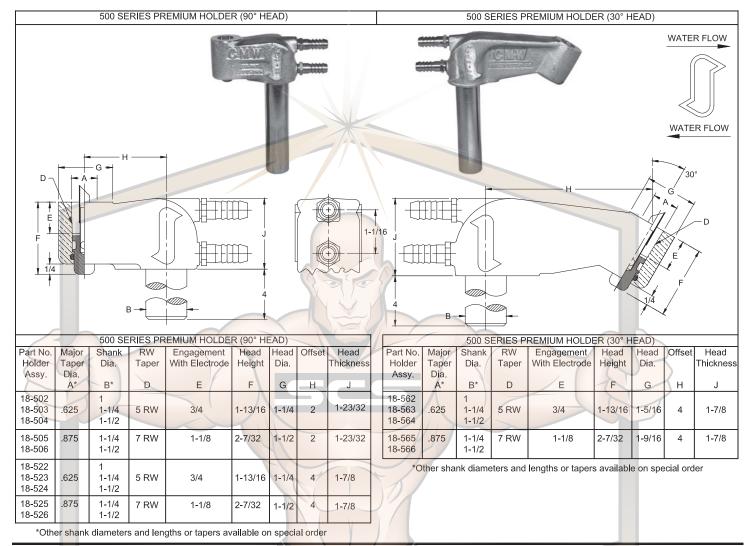
*Other shank diameters and lengths or tapers available on special order


400 SERIES OFFSET (NON-EJECTOR) REPLACEMENT PARTS

565

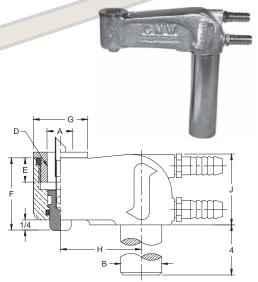
SOUTHERN COPPER & SUPPLY COMPANY, INC. 800-289-2728

400 SERIES OFFSET (NON-EJECTOR) REPLACEMENT PARTS

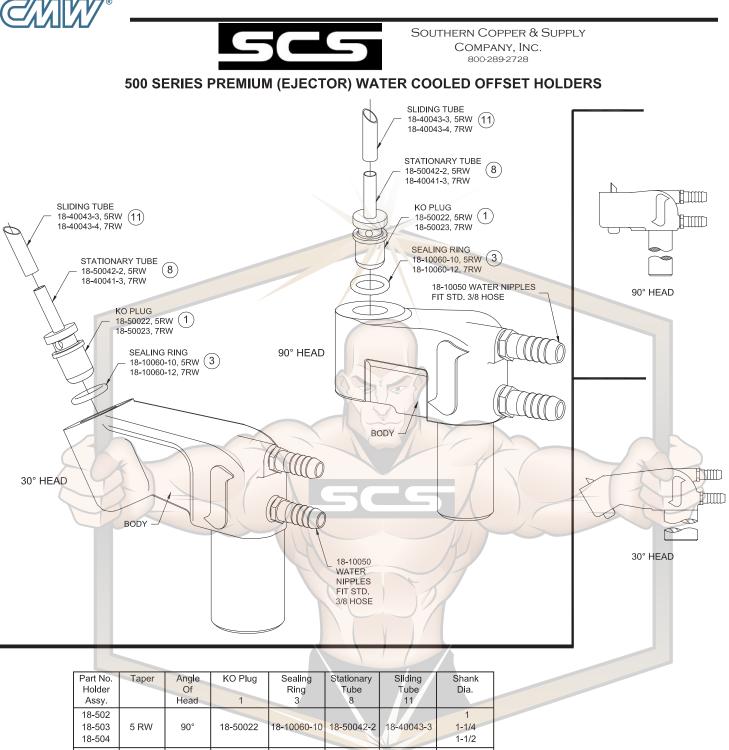


*Reverse shank

COMPANY, INC. 800-289-2728



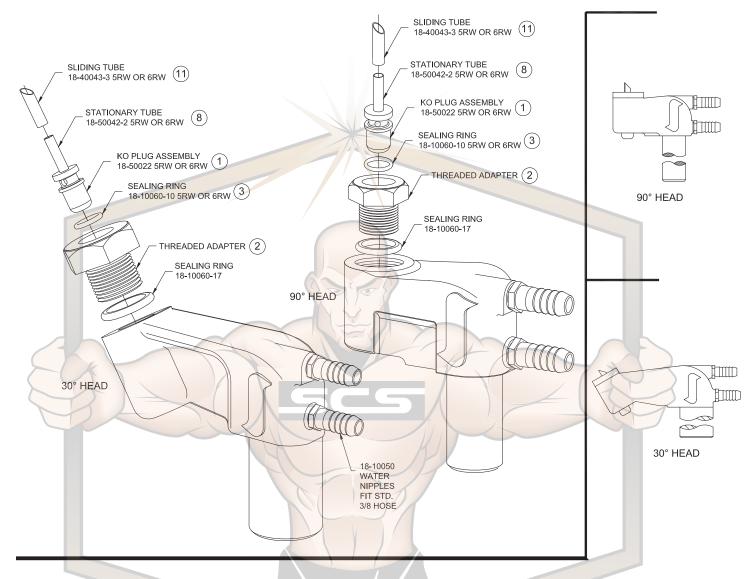
500 SERIES PREMIUM (EJECTOR) WATER COOLED OFFSET HOLDERS


500 SERIES PREMIUM (EJECTOR) WATER COOLED ELECTRODE HOLDERS WITH THREADED ADAPTERS

		500 SE	RIES PRI	EMIUM F	IOLDER WITH T	HREADE	ED ADA	PTERS	3	
Part No. Holder Assy.	Head Angle	Major Taper Dia. A*	Shank Dia. B*	RW Taper D	Engagement With Electrode	Head Height F	Head Dia. G	Offset H	Head Thickness G	Part No. Threaded Adapter
18-5035 18-5036	90°	.625 .750	в 1-1/4	5 RW 6 RW	3/4 7/8	1-13/16 1-15/16	1-1/4	2	1-23/32	18-7875 18-7876
18-5045 18-5046	90°	.625 .750	1-1/2	5 RW 6 RW	3/4 7/8	1-13/16 1-15/16	1-1/4	2	1-23/32	18-7875 18-7876
18-5235 18-5236	90°	.625 .750	1-1/4	5 RW 6 RW	3/4 7/8	1-13/16 1-15/16	1-1/4	4	1-7/8	18-7875 18-7876
18-5245 18-5246	90°	.625 .750	1-1/2	5 RW 6 RW	3/4 7/8	1-13/16 1-15/16	1-1/4	4	1-7/8	18-7875 18-7876
18-5635 18-5636	30°	.625 .750	1-1/4	5 RW 6 RW	3/4 7/8	1-13/16 1-15/16	1-1/4	4	1-7/8	18-7875 18-7876
18-5645 18-5646	30°	.625 .750	1-1/2	5 RW 6 RW	3/4 7/8	1-13/16 1-15/16	1-1/4	4	1-7/8	18-7875 18-7876

*Other shank diameters and lengths or tapers available on special order

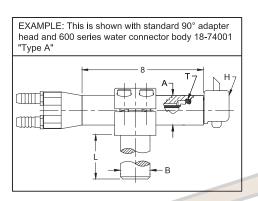
500 SERIES PREMIUM (EJECTOR) REPLACEMENT PARTS



18-504		00	10 00022		TO ODD TE E	10 100 10 0	1-1/2
18-505 18-506	7 RW	90°	18-50023	18-10060-12	18-40041-3	18-40043-4	1-1/4 1-1/2
18-522 18-523 18-524	5 RW	90°	18-50022	18-10060-10	18-50042-2	18-40043-3	1 1-1/4 1-1/2
18-525 18-526	7 RW	90°	18-50023	18-10060-12	18-40041-3	18-40043-4	1-1/4 1-1/2
18-562 18-563 18-564	5 RW	30°	18-50022	18-10060-10	18-50042-2	18-40043-3	1 1-1/4 1-1/2
18-565 18-566	7 RW	30°	18-50023	18-10060-12	18-40041-3	18-40043-4	1-1/4 1-1/2

SOUTHERN COPPER & SUPPLY COMPANY, INC. 800-289-2728

500 SERIES PREMIUM (EJECTOR) WATER COOLED OFFSET HOLDERS WITH THREADED ADAPTER


Part No. Holder Assy.	Taper	Angle Of Head	KO Plug ** 1	Sealing Ring 3	Stationary Tube 8	Sliding Tube 11	Shank Dia.	Threaded Adapter* 2
18-5035 18-5036	5 RW 6 RW	90°	18-50022	18-10060-10	18-50042-2	18-40043-3	1-1/4	18-7875 18-7876
18-5045 18-5046	5 RW 6 RW	90°	18-50022	18-10060-10	18-50042-2	18-40043-3	1-1/2	18-7875 18-7876
18-5235 18-5236	5 RW 6 RW	90°	18-50022	18-10060-10	18-50042-2	18-40043-3	1-1/4	18-7875 18-7876
18-5245 18-5246	5 RW 6 RW	90°	18-50022	18-10060-10	18-50042-2	18-40043-3	1-1/2	18-7875 18-7876
18-5635 18-5636	5 RW 6 RW	30°	18-50022	18-10060-10	18-50042-2	18-40043-3	1-1/4	18-7875 18-7876
18-5645 18-5646	5 RW 6 RW	30°	18-50022	18-10060-10	18-50042-2	18-40043-3	1-1/2	18-7875 18-7876

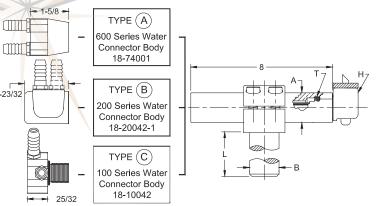
* Threaded adapter includes sealing ring 18-10060-17 ** KO Plug assembly includes stationary tube 18-50042-2

600 SERIES UNIVERSAL WATER COOLED ELECTRODE HOLDERS

- 1-5/8 -Straight TYPE (A) Adapter 600 Series Water Head Connector Body I Assembly 18-74001 目目 1-23/32 TYPE (B) 90° Adapter Head 200 Series Water Assembly Connector Body 18-20042-1 TYPE (C) 30° Adapter 100 Series Water Head Connector Body 18-10042 Н Assembly - 25/32

600 S	ERIES UN	VIVERSA	L HOLDER	R (90° AD	APTER H	EAD)
Part No. Holder Assy.*	Taper	Barrel Dia. A	Shank Dia B	Shank Length L	Head Assy. H	Barrel Thread Size T
18-601 18-603	4 RW	1	7/8 1	3 3	18-764	7/8-14
18-605 18-607		1-1/4 1-1/4	1-1/4 1-1/2	3-1/2 4	18-764	7/8-14
18-611 18-613		1 1	7/8 1	3 3	18-766	7/8-14
18-615 18-617	5 RW	1-1/4 <mark>1-1/2</mark>	1-1/4 1-1/2	3-1/2 4	18-766	7/8-14
18-651 18-657		1-1/4 1-1/4	1-1/4 1-1/2	3-1/2 4	18-780	1-14
18-655 18-653		1-1/2 1-1/2	1-1/4 1-1/2	4	18-780	1-14
18-661 18-665 18-663	7 RW	1-1/4 1-1/2 1-1/2	1-1/4 1-1/4 1-1/2	3-1/2 4 4	18-782	1-14

600 SERIE	600 SERIES UNIVERSAL HOLDER (STRAIGHT ADAPTER HEAD)										
Part No. Holder Assy.*	Taper	Barrel Dia. A	Shank Dia B	Shank Length L	Head Assy. H	Barrel Thread Size T					
18-621 18-622	4 RW	1 1	7/8 1	3 3	18-768	7/8-14					
18-623 18-671	41.00	1-1/4 1-1/4	1-1/4 1-1/4	3-1/2 3-1/2	18-768 18-784	7/8-14 1-14					
18-624 18-674	5 RW	1-1/4 1-1/4	1-1/2 1-1/2	4 4	18-768 18-784	7/8-14 1-14					
18-672 18-673	01110	1-1/2 1-1/2	1-1/2 1-1/4	4	18-784	1-14					

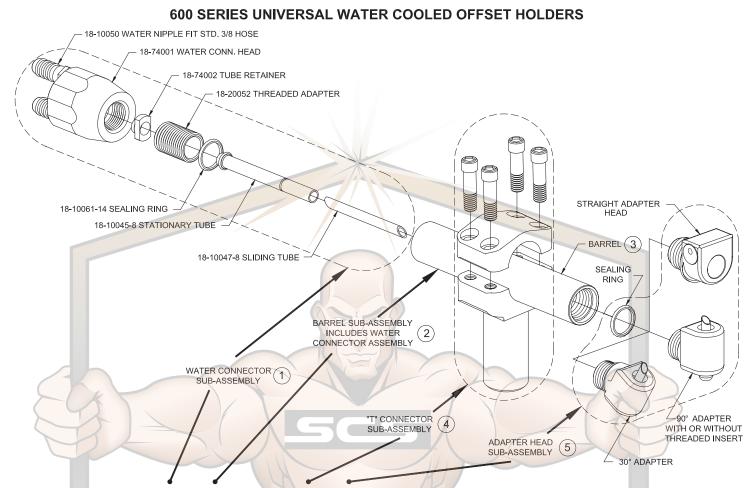

*Standard holders include type "A" water connector, types "B" and "C" available on request See page 46 for adapter head details and page 47 for additional "T" connector information.

	6			Ĩ			
- F	art No. Iolder	SERIES L Taper	Barrel Dia.	L HOLDE Shank Dia	R (30° AE Shank Length	Head Assy.	Barrel Thread Size
1	Assy.* 8-602 8-604	4 RW	A 1 1	B 7/8 1	3 3	H 18-765	T 7/8-14
	8-606 8-608	K)	1-1/4 1-1/4	1-1/4 1-1/2	3-1/2 4	18-765	7/8-14
	8-612 8-614	1	1 1	7/8 1	3 3	18-767	7/8-14
	8-616 8-618	5 RW	1-1/4 1-1/4	1-1/4 1-1/2	3-1/2 4	18-767	7/8-14
	8-652 8-658	JKW	1-1/4 1-1/4	1-1/4 1-1/2	3-1/2 4	18-781	1-14
	8-656 8-654		1-1/2 1-1/2	1-1/4 1-1/2	4 4	18-781	1-14
1	8-662 8-666 8-664	7 RW	1-1/4 1-1/2 1-1/2	1-1/4 1-1/4 1-1/2	3-1/2 4 4	18-783	1-14

600 SERIES UNIVERSAL WATER COOLED ELECTRODE HOLDER (THREADED ADAPTER HEAD)

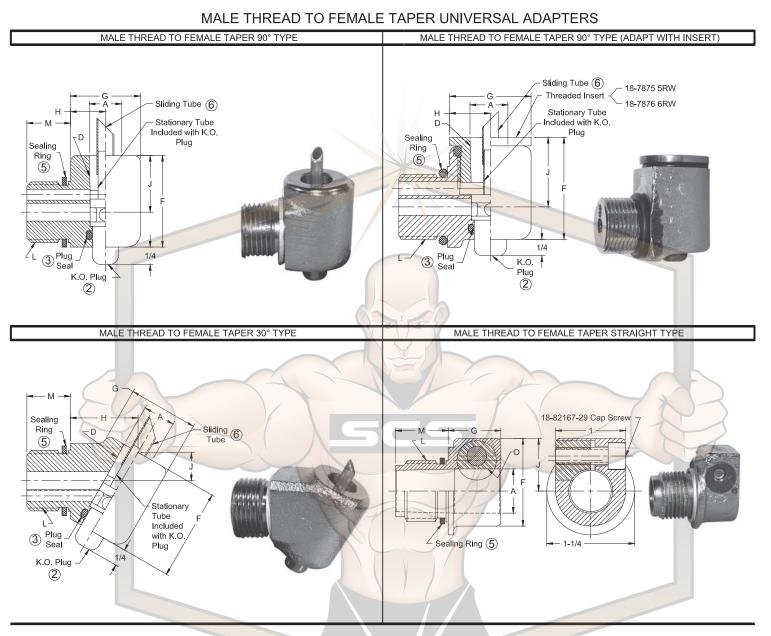
600 SERIES UNIVERSAL HOLDER (THREADED ADAPTER HEAD)											
Part No. Holder Assy.*	Taper	Head Angle	Barrel Dia. A	Shank Dia B	Shank Length L	Head Assy. H	Barrel Thread Size T				
18-6515 18-6535	5 RW	90°	1-1/4 1-1/2	1-1/4 1-1/2	3-1/2 4	18-7805	1-14	1-23/32			
18-6525 18-6545	3 KW	30°	1-1/4 1-1/2	1-1/4 1-1/2	3-1/2 4	18-7815	1-14				
18-6516 18-6536	6 RW	90°	1-1/4 1-1/2	1-1/4 1-1/2	3-1/2 4	18-7806	1-14				
18-6526 18-6546		30°	1-1/4 1-1/2	1-1/4 1-1/2	3-1/2 4	18-7816	1-14				

*Standard holders include type "A" water connector, types "B" and "C" available on request



600 SERIES UNIVERSAL REPLACEMENT PARTS

SOUTHERN COPPER & SUPPLY COMPANY, INC. 800-289-2728


Part No. Holder Assy.	Taper	Angle Of Head	Water Conn. Assembly 1	Barrel Assy. 2	Barrel	"T" Conn. Assy. * 4	Adapter Head Assy.* 5	Part No. Holder Assy.	Taper	Angle Of Head	Water Conn. Assembly* 1	Barrel Assy. 2	Barrel 3	"T" Conn. Assy. * 4	Adapter Head Assy.* 5
18-601 18-602		90° 30°	18-74000-8	18-701	18-37210-8	18-725	18-764 18-765	18-655 18-656		90° 30°	18-74000-8	18-705	18-37610-8	18-728	18-780 18-781
18-603 18-604	4 RW	90° 30°	18-74000-8	10-701	10-37210-0	18-726	18-764 18-765	18-653 18-654	5 RW	90° 30°	18-74000-8	10-703	10-37010-0	18-729	18-780 18-781
18-605 18-606		90° 30°	18-74000-8	18-702	18-37310-8	18-727	18-764 18-765	18-671 18-672		STR. STR.	18-74000-8	18-704 18-705	18-37510-8 18-37610-8	18-727 18-729	18-784
18-607 18-608		90° 30°	18-74000-8			18-730	18-764 18-765	18-673 18-674		STR. STR.	18-74000-8	18-705 18-704	18-37610-8 18-37510-8	18-728 18-730	18-784
18-611 18-612		90° 30°	18-74000-8	- 18-701	18-37210-8	18-725	18-766 18-767	18-6515 18-6525	5 RW	90° 30°	18-74000-8	18-704	18-37510-8	18-727	18-7805 18-7815
18-613 18-614		90° 30°	18-74000-8	10-701	10-07210-0	18-726	18-766 18-767	18-6535 18-6545	THD.	90° 30°	18-74000-8	18-705	18-37610-8	18-729	18-7805 18-7815
18-615 18-616		90° 30°	18-74000-8	18-702	18-37310-8	18-727	18-766 18-767	18-6516 18-6526	6 RW	90° 30°	18-74000-8	18-704	18-37510-8	18-727	18-7806 18-7816
18-617 18-618	5 RW	90° 30°	18-74000-8	10-702	10-07 0 10-0	18-730	18-766 18-767	18-6536 18-6546	THD.	90° 30°	18-74000-8	18-705	18-37610-8	18-729	18-7806 18-7816
18-621 18-622		STR. STR.	18-74000-8	18-701	18-37210-8	18-725 18-726	18-768	18-661 18-662		90° 30°	18-74000-8	18-704	18-37510-8	18-727	18-782 18-783
18-623 18-624		STR. STR.	18-74000-8	18-702	18-37310-8	18-727 18-730	18-768	18-665 18-666	7 RW	90° 30°	18-74000-8	18-705	18-37610-8	18-728	18-782 18-783
18-651 18-652		90° 30°	18-74000-8	10 704	18-37510-8	18-727	18-780 18-781	18-663 18-664		90° 30°	18-74000-8	10-703	10-07010-0	18-729	18-782 18-783
18-657 18-658		90° 30°	18-74000-8	10-704	10-3/510-8	18-730	18-780 18-781	* See p informa	0	r adapter	head details a	and page 4	17 for addition	al "T" conn	lector

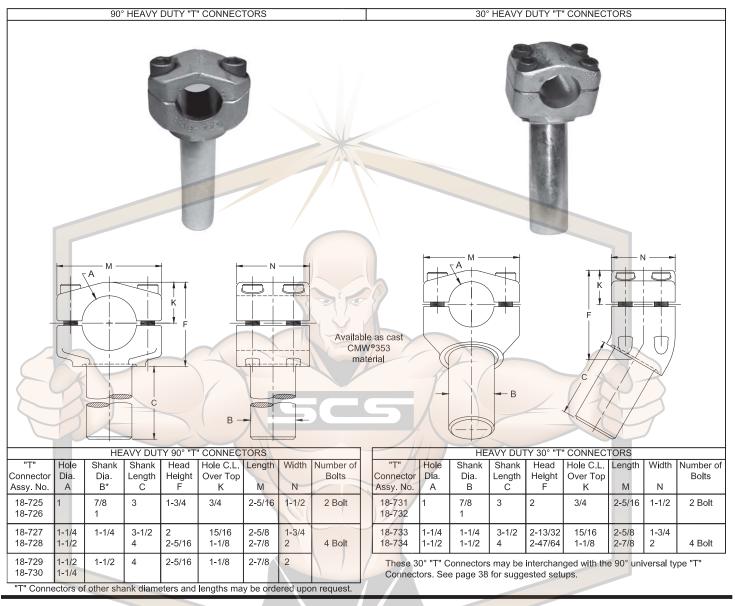
MALE THREAD TO FEMALE TAPER UNIVERSAL ADAPTERS

565

SOUTHERN COPPER & SUPPLY COMPANY, INC. 800-289-2728

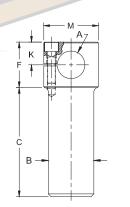
					MALE TH	IREAD TO FEM	JALE TAPE	R UNIVERSA	AL ADAPTER	S			
Adapter Part No.	Adapter Angle	Male T Thread	hread	Female Taper	Taper Major	Overall Head Height	Head Diameter	End Barrel to C.L. of	C.L. Barrel to C.L. of	K.O. Plug Part No.	K.O. Plug Seal Ring	Sealing Ring	Sliding Tube
	5	Size	Ū	Size	Dia.		or Length	Taper	Taper	0	Part No.	Part No.	Part No.
		L	M	D	A	F	G	Н	J	2	3	5	6
18-764 18-765	90° 30°	7/8-14	9/16	4 RW	.463	1-9/16	1	19/32 1-1/16	13/16 15/32	18-50021	18-10060-8	18-76460	18-50041-1
18-766 18-767 18-768	90° 30° Str.	7/8-14	9/16	5 RW	.625	1-13/16 1-13/16 1-1/4	1 1-1/16 3/4	19/32 1-11/32 	1-1/16 53/64 3/4	18-50022 18-50022 	18-10060-10 	18-76460	18-40043-3 18-40043-3
18-780 18-781 18-784	90° 30° Str.	1-14	3/4	5 RW	.625	1-13/16 1-13/16 1-1/4	1-1/4 1-5/16 3/4	21/32 1-3/8 	1-1/16 13/16 3/4	18-50022 18-50022 	18-10060-10 	18-10060-17	18-40043- 18-40043- —
18-782 18-783	90° 30°	1-14	3/4	7 RW	.875	2-3/16	1-1/2 1-9/16	25/32 1-3/8	1-3/16 13/16	18-50023	18-10060-12	18-10060-17	18-40043-4
18-7805* 18-7815*	90° 30°	1-14	3/4	5 RW	.625	1-13/16	1-1/4 1-5/16	21/32 1-3/8	1-1/16 13/16	18-50022	18-10060-10	18-10060-17	18-40043-3
18-7806* 18-7816*	90° 30°	1-14	3/4	6 RW	.750	1-15/16	1-1/4 1-5/16	21/32 1-7/16	1-3/16 59/64	18-50022	18-10060-10	18-10060-17	18-40043-

*These adapters have threaded inserts 18-7875 (5RW) or 18-7876 (6RW) taper



SOUTHERN COPPER & SUPPLY COMPANY, INC. 800-289-2728

"T" CONNECTORS FOR HOLDERS


"T" CONNECTORS FOR HOLDERS

Available as cast CMW®3 material

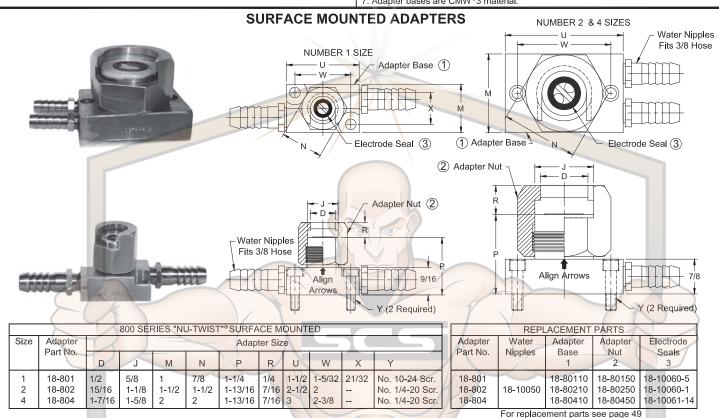
SMALL BARREL 90° "T" CONNECTORS											
"T" Connector Assy. No.	Hole Dia. A	Shank Dia. B	Shank Length C	Head Height F	Hole C.L. Over Top K	Dia. M	Number of Bolts				
18-720 18-721	3/4	3/4 7/8	3	1-1/4	5/8	1-1/2	1 Bolt				
18-722 18-723 18-724		1 1-1/4 1-1/2									

"T" Connectors of other shank diameters and lengths may be ordered upon request.

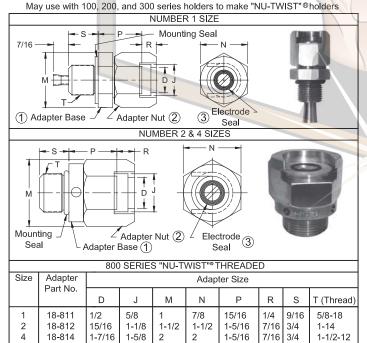
47

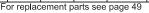
800 SERIES "NU-TWIST"® ADAPTERS

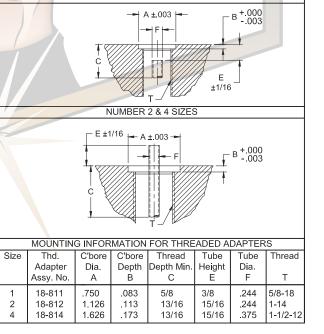
800 SERIES "NU-TWIST"® ADAPTERS



replacement of electrodes.

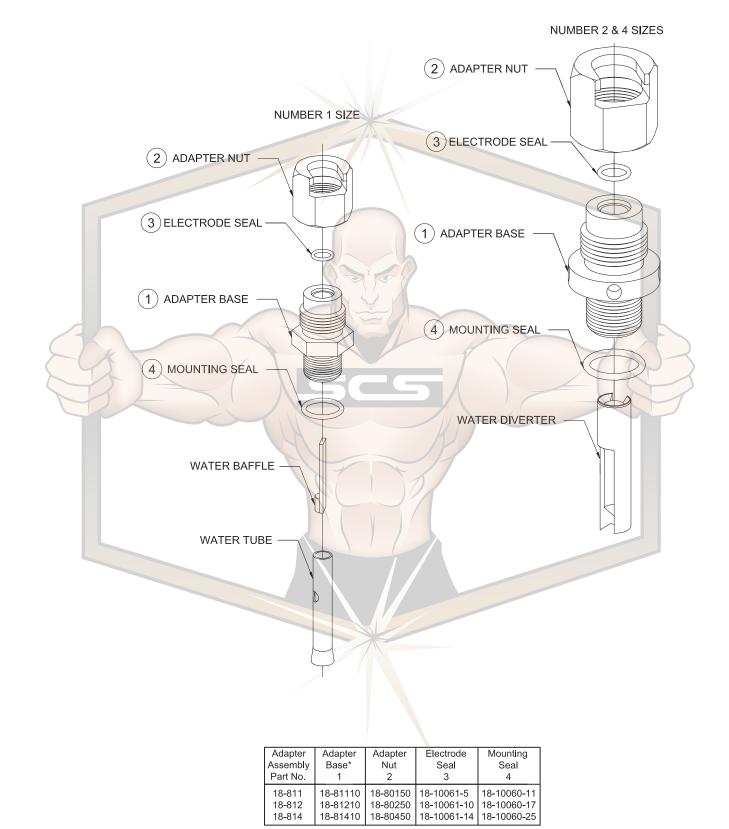

2. "O" ring seals provide water tight connections.


3. Double groove construction in bore or locking nut accurately aligns and locks the


electrode in position with a maximum of a turn and one half. 4. Through use of baffles in adapters and in electrodes over 1" long efficient cooling is effectively achieved. 5. All components are of corrosion-resistant alloys. 6. Maintenance costs are unusually low. 7. Adapter bases are CMW°3 material.

800 SERIES "NU-TWIST"[®] THREADED ADAPTERS & MOUNTING INFORMATION

NUMBER 1 SIZE



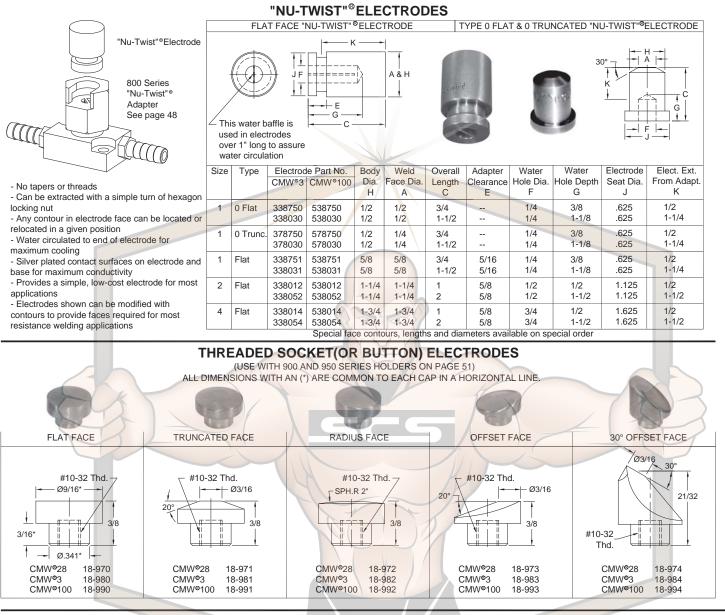
800 SERIES "NU-TWIST"[®] THREADED ADAPTER REPLACEMENT PARTS

CAIN

SOUTHERN COPPER & SUPPLY COMPANY, INC. 800-289-2728

800 SERIES "NU-TWIST"® THREADED ADAPTERS

^{*} Adapter base includes water tube & baffel or water diverter

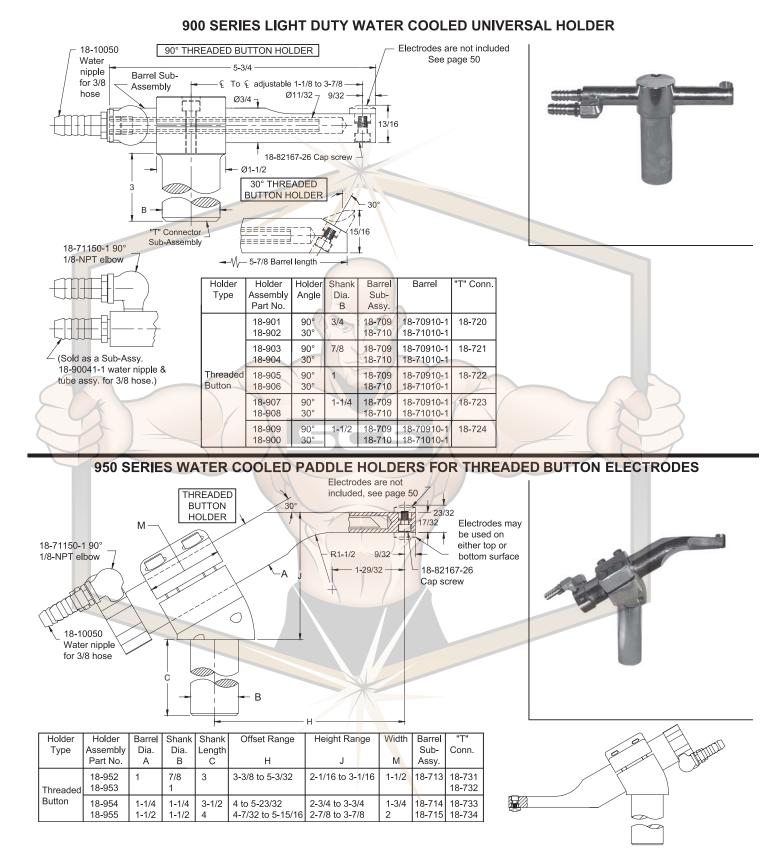

"NU-TWIST"[®], THREADED SOCKET (OR BUTTON), MALE THREADED BUTTON ELECTRODES

Fax: 866-239-6995

565

SOUTHERN COPPER & SUPPLY COMPANY, INC. 800-289-2728

MALE THREADED BUTTON ELECTRODES

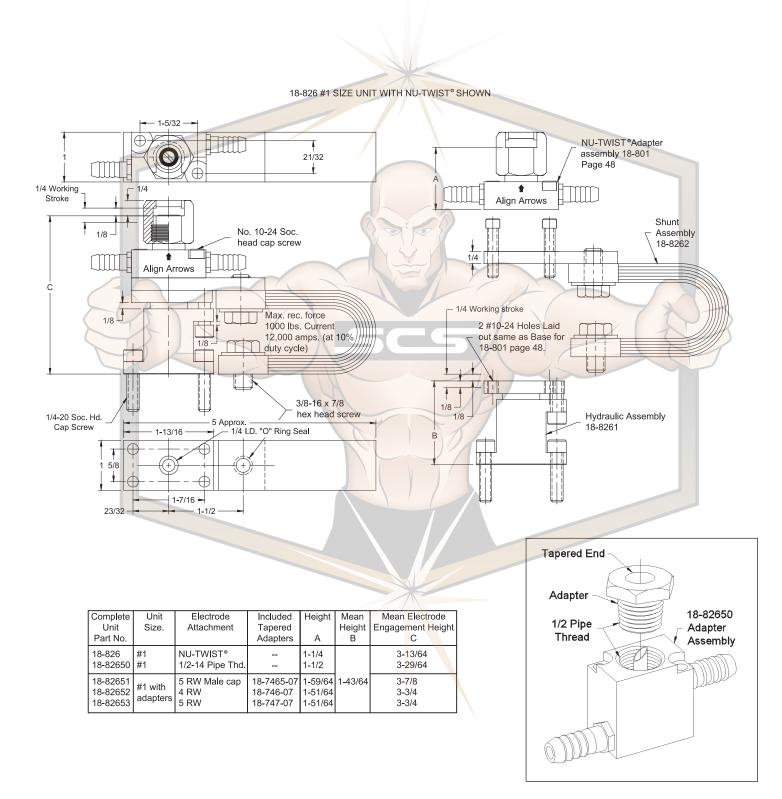

CMW shall supply a variety of nose configurations (examples shown below) made to your specifications. These electrodes are available in CMW °100, CMW °28 and CMW °3 materials to meet your various applications. Threads in both Unified (inch) or metric sizes can be supplied.

900 SERIES UNIVERSAL & 950 SERIES PADDLE WATER COOLED HOLDERS

SOUTHERN COPPER & SUPPLY COMPANY, INC. 800-289-2728

VIEW IS SHOWING BARREL SUB-ASSY AND ELECTRODE REVERSED IN SHANK

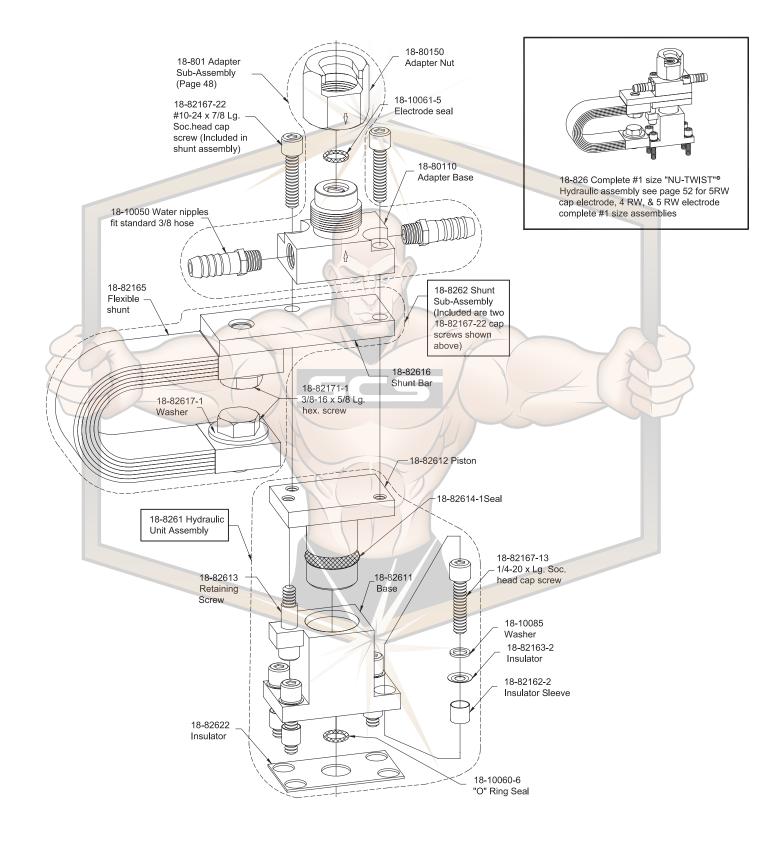
HYDRAULIC EQUALIZING ADAPTERS AND ASSEMBLIES



SOUTHERN COPPER & SUPPLY COMPANY, INC. 800-289-2728

HYDRAULIC EQUALIZING ADAPTERS AND ASSEMBLIES

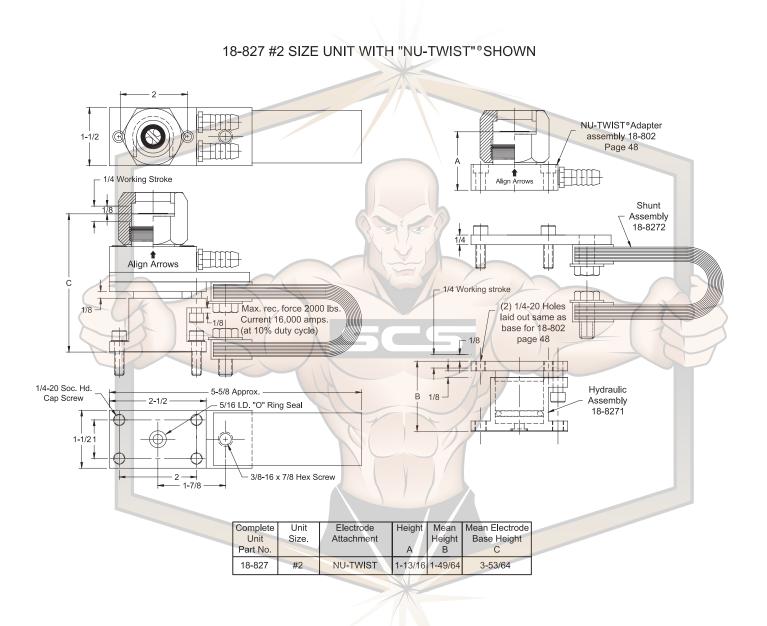
CMW Hydraulic Equalizing adapter units are used to equalize the weld force when two or more welds are required simultaneously. The equalizing action is developed in a closed hydraulic system - and is accomplished by hydraulically interconnecting two or more units. We recommend using fire resistant hydraulic fluid compatible with BUNA "N" such as HOUGHTO-SAFE #620, 1120 or equivalent. Consult your local industrial lubricant distributor.



SOUTHERN COPPER & SUPPLY COMPANY, INC. 800-289-2728

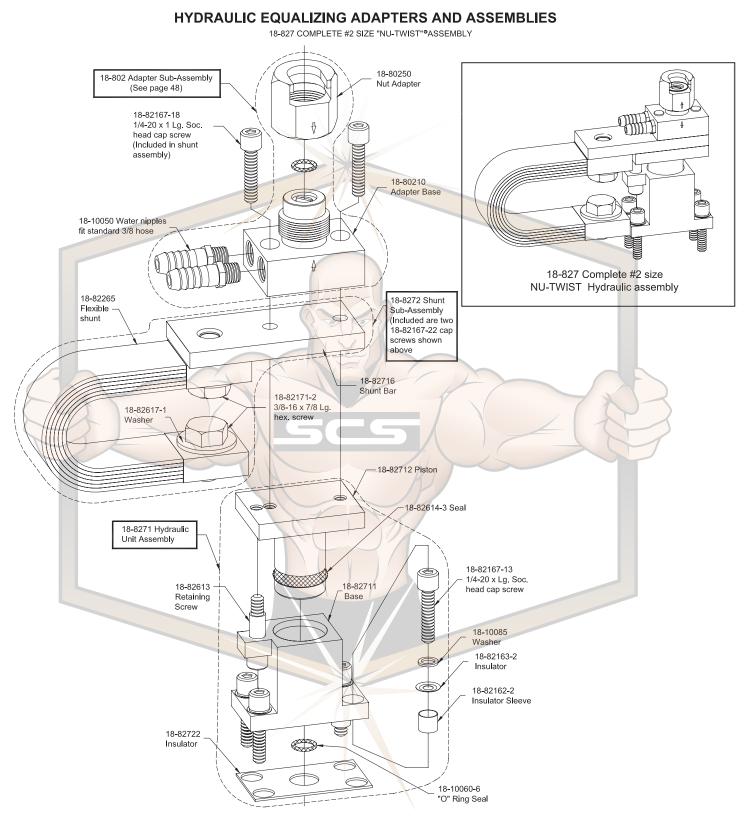
HYDRAULIC EQUALIZING ADAPTERS AND ASSEMBLIES

18-826 COMPLETE #1 SIZE "NU-TWIST" ASSEMBLY


HYDRAULIC EQUALIZING ADAPTERS AND ASSEMBLIES

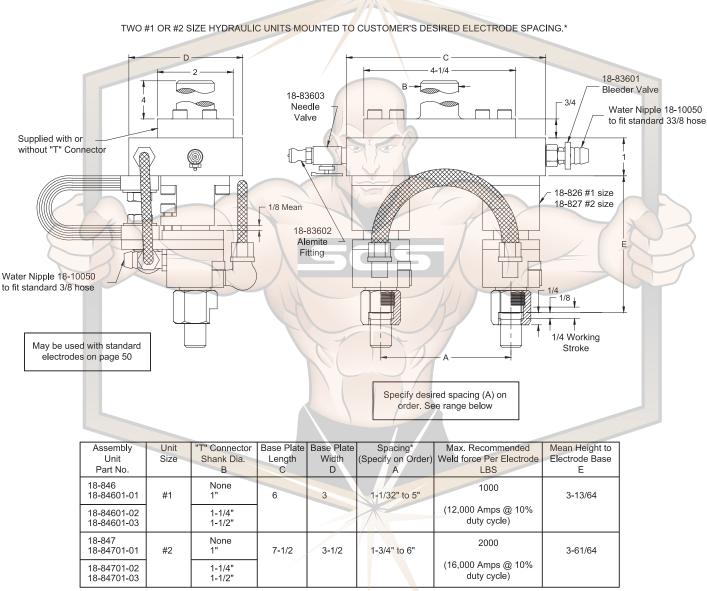
SOUTHERN COPPER & SUPPLY COMPANY, INC. 800-289-2728

HYDRAULIC EQUALIZING ADAPTERS AND ASSEMBLIES


CMW Hydraulic Equalizing adapter units are used to equalize the weld force when two or more welds are required simultaneously. The equalizing action is developed in a closed hydraulic system - and is accomplished by hydraulically interconnecting two or more units. We recommend using fire resistant hydraulic fluid compatible with BUNA "N" such as HOUGHTO-SAFE #620, 1120 or equivalent. Consult your local industrial lubricant distributor.

SOUTHERN COPPER & SUPPLY COMPANY, INC. 800-289-2728

FIXED UNIT HYDRAULIC EQUALIZING ASSEMBLIES (WATER COOLED)



SOUTHERN COPPER & SUPPLY COMPANY, INC. 800-289-2728

FIXED UNIT HYDRAULIC EQUALIZING ASSEMBLIES

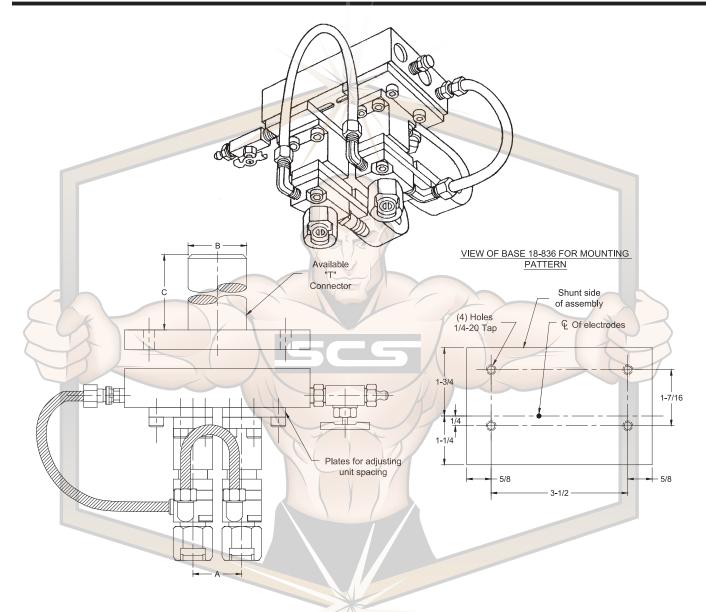
CMW Hydraulic Equalizing adapter units are used to equalize the weld force when two or more welds are required simultaneously. The equalizing action is developed in a closed hydraulic system - and is accomplished by hydraulically interconnecting two or more units. We recommend using fire resistant hydraulic fluid compatible with BUNA "N" such as HOUGHTO-SAFE #620, 1120 or equivalent. Consult your local industrial lubricant distributor.

Note:

1. Multiple units of 2-8 can also be supplied on custom designed base plates with or without "T" Connectors.

2. Units may be modified with adapters for RW tapered caps and electrodes

ADJUSTABLE HYDRAULIC EQUALIZING ASSEMBLY 18-836



SOUTHERN COPPER & SUPPLY COMPANY, INC. 800-289-2728

ADJUSTABLE HYDRAULIC EQUALIZING ASSEMBLY 18-836

Part No. 18-836 (shown below) is a typical assembly using two 18-826 assemblies set up as a complete self-contained unit for making two spot welds at one time. This unit is so arranged as to allow the center distances to be readily adjusted from 1-3/32" centers to 2-1/4" centers or by rearrangement of the same parts centers maybe adjusted from 2-1/4" to 3-1/2". This setup also include facilities for filling and bleeding the hydraulic units. "T" Mounting 18-83614 is available to order for assembly 18-836. We recommend using fire resistant hydraulic fluid compatible with BUNA "N" such as HOUGHTO-SAFE #620, 1120 or equivalent. Consult your local industrial lubricant distributor.

Assembly	Hydraulic	Electrode	Adjustable		"T" Coi	nnecto	or	Max. Recommended Weld
Part No.	Unit Size	Attachment	Spacing					force Per Electrode
		***	Range					LBS
			A					
18-836	#1	#1 NU-TWIST®	1-1/32 - 2-1/4		NC	NE		1000 (12000 AMPS @ 10% Duty Cycle)
			2-1/4 - 3-1/2*					(12000 AMPS @ 10% Duty Cycle)
				Ava	ilahle	Dia.	Length	

18-83614-01

18-83614-03

č

4 **

В

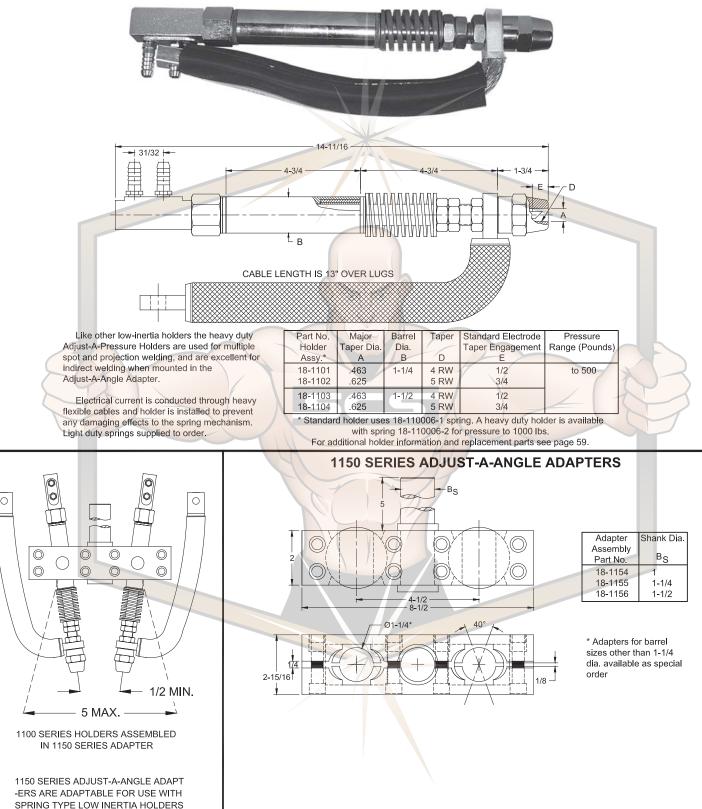
**

**

* Partial disassembly, rearrangement of plates, and bleeding of unit will be necessary to switch centerline ranges.

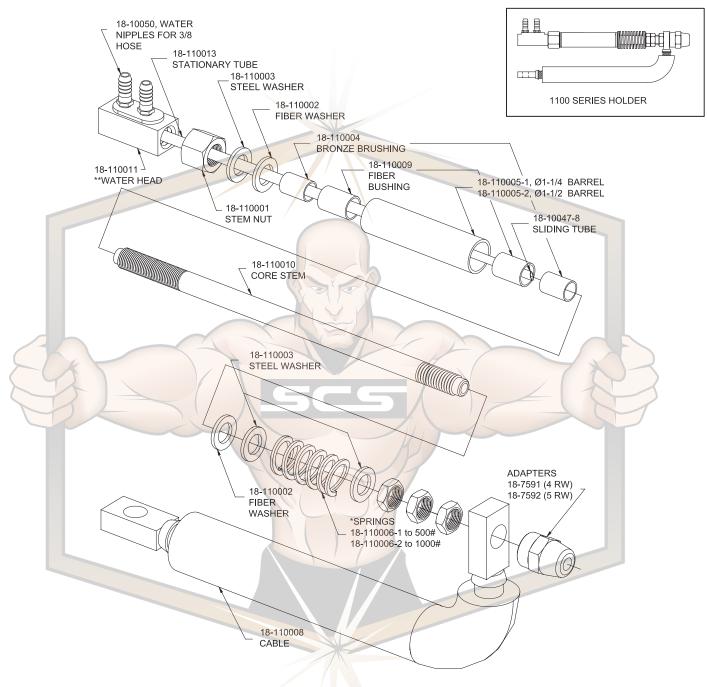
** Customer must specify dimensions desired.

*** Other attachments available on request


1100 SERIES ADJUST-A-PRESSURE WATER COOLED LOW INERTIA ELECTRODE HOLDER

SOUTHERN COPPER & SUPPLY COMPANY, INC. 800-289-2728

1100 SERIES ADJUST-A-PRESSURE WATER COOLED LOW INERTIA ELECTRODE HOLDERS


1100 SERIES AS WELL AS STRAIGHT HOLDERS 100, 200, AND 300 SERIES.

SOUTHERN COPPER & SUPPLY COMPANY, INC. 800-289-2728

1100 SERIES ADJUST-A-PRESSURE WATER COOLED LOW INERTIA ELECTRODE HOLDERS

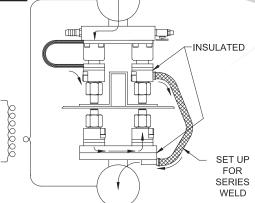
** INCLUDES 18-110013, 18-10050, 18-10047-8

* SPRINGS: 500# SPRING IS PAINTED BLUE; 1000# SPRING IS PAINTED YELLOW

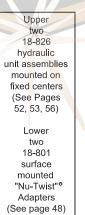
Part No.	Barrel	Adapter	Adjust
Holder			-A- Angle
Assy.*			Adapters
18-1101	18-110005-1	18-7591	Select from 1150
18-1102		18-7592	Series Chart page 58
18-1103	18-110005-2	18-7591	Special order
18-1104		18-7592	
	0	· · · · · · · · ·	. C

* See page 58 for more information

APPLICATION SHEET FOR TYPICAL MULTIPLE SPOT WELDING SETUPS



SOUTHERN COPPER & SUPPLY COMPANY, INC.


800-289-2728 APPLICATION SHEET FOR TYPICAL MULTIPLE SPOT WELDING SETUPS Typical Set Up For Typical Set Up For 3 Spots at a time in Parallel 2 spots simultaneously in parallel Standard 1-1/4 dia. Shank 1 CMW Std. 1150 Series Adapter T 0 2 CMW Std. 1100 Series Holders С \bigcirc 0 0 1 CMW Special 1100 Series Holder 4 RW-16-582011-01 5 RW-16-582012-01 ()0 0 Ħ 00 Ø 0 0 $^{\circ}$ \bigcirc ° SET UP \bigcirc ° 0 FOR SERIES WELD Ħ 件 Upper SET UP 2-1100 Series Holders FOR 0000000 1-1150 Series Adapter PARALLEL WELD Lower С 2-100.200 or 300 Series Holders

Contact Factory All above items priced and made to special order Illustrations only

I

2000000

Ē SET UP FOR PARALLEL WELD

1-1150 Series Adapter with special center shank

565

SOUTHERN COPPER & SUPPLY COMPANY, INC. 800-289-2728

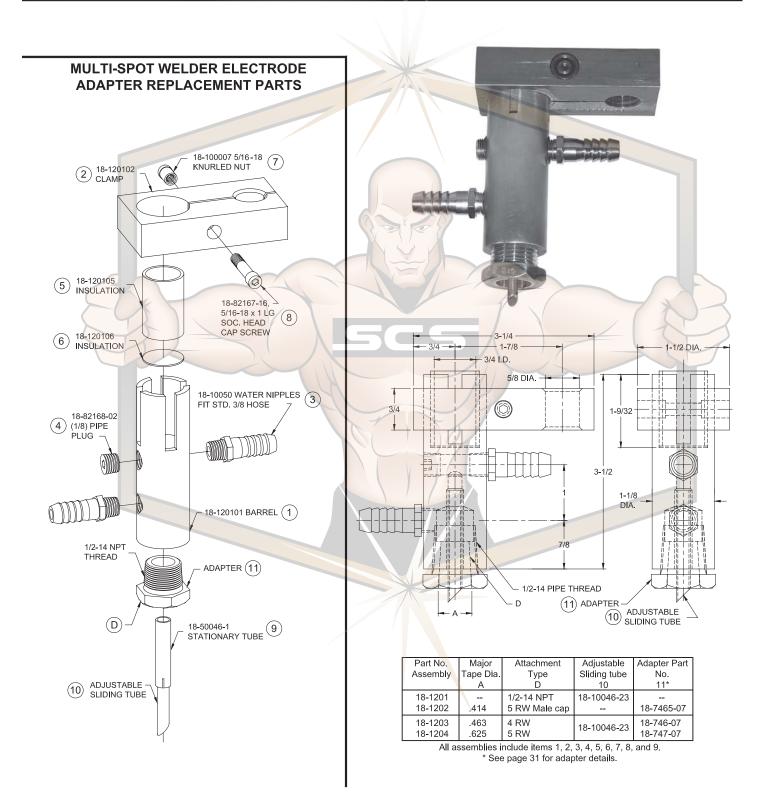
PLATEN MOUNTED ELECTRODE HOLDERS

PLATEN MOUNTED ELECTRODE HOLDERS

					nipple at combinat the part r the inlet r nipple. E:	position ions may number. nipple an xample; j	#1 and tl / be spec The first d the sec part No.	he outle cial orde of the la cond dig 18-0510	, as shown t water nip red by cha st two digit it indicates jit indicates b-56 would nipple at p 4	ple at pos inging the ts indicate s the locat place the	ition #2, last two es the loo tion of th inlet wa	any other digits of cation of e outlet
1		1			CMW 3 5 18-05XX-XX							
	C	A	DAPTER	Standard	d Water	Outlet -/		1	, Standard	Water	Inlet	
									10-12 & 18 oter & slidir			
11 SLIDING TUBE			TIONARY 8			+						
					0							
		X	PLAT MOUN HOLI	ITED		CMW ^o 3		E -	₽ 	— Н		
18-10050 WATER NIPPLE FOR 3/8 HOS	E				Material G G G G G G G G G G G G G G G G G G G							
Order one of each for your application Holder Adapter	Attachment Type	Stationary Tube	Order as re Sliding Tube	guired Sliding Length	Overall Length	Slot Depth	Width	Slot Width	Top Dia.	Overall Height	Base Height	Thread
Part No. Part No.		8	11		A	В	С	D	E	F	G	Н
18-0510-12 18-785	4RW	18-40041-5	18-50041-3 18-50041-2	1-3/8 2-1/2	4-1/4	1	1-1/2	1/2	1-23/64	2-1/8	1/2	
18-0520-12 18-785	4RW	18-40041-5	18-50041-3 18-50041-2	1-3/8 2-1/2	T	1-5/8	2	3/4	1-49/64	2-3/8	3/4	
18-0510-12 18-786	5RW	18-40041-5	18-40043-11 18-40043-5 18-40043-9	1-3/8 2 4	4-1/4	1	1-1/2	1/2	1-23/64	2-1/8	1/2	
18-0520-12 18-786	5RW	18-40041-5	18-40043-11 18-40043-5 18-40043-9	1-3/8 2 4	7	1-5/8	2	3/4	1-49/64	2-3/8	3/4	
18-0510-12 18-7863	6RW	18-40041-5	18-40043-14 18-40043-9	2-1/8 4	4-1/4	1	1-1/2	1/2	1-23/64	2-1/8	1/2	1-14 UNF
18-0520-12 18-7863	6RW	18-40041-5	18-40043-14 18-40043-9	2-1/8 4	7	1-5/8	2	3/4	1-49/64	2-3/8	3/4	
18-0510-12 18-787	7RW	18-40041-5	18-40043-15 18-40043-9	2-3/8 4	4-1/4	1	1-1/2	1/2	1-23/64	2-1/8	1/2	
18-0520-12 18-787	7RW	18-40041-5	18-40043-15 18-40043-9	2-3/8 4	7	1-5/8	2	3/4	1-49/64	2-3/8	3/4	
18-0510-12 18-7743**	18-0510-12 18-7743** 5/8-18 18-7743** 5/8-18 THD. 18-40041-5								1-23/64	2-1/8	1/2	
18-0520-12 18-7743**	#2 SIZE Nu-Twist® 5/8-18 THD	18-40041-5	-		7	1-5/8	2	3/4	1-49/64	2-3/8	3/4	

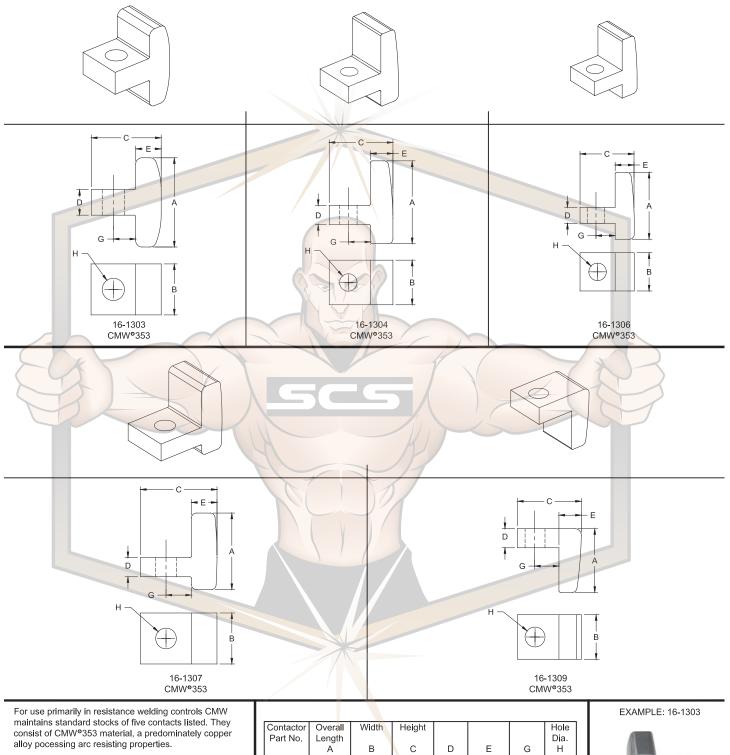
**Adapter for 1" dia. & 1-1/4 dia. Chameleon/Max-Life™ projection welding electrodes and 18-811 #1 size threaded "NU-TWIST" • adapter.

٦

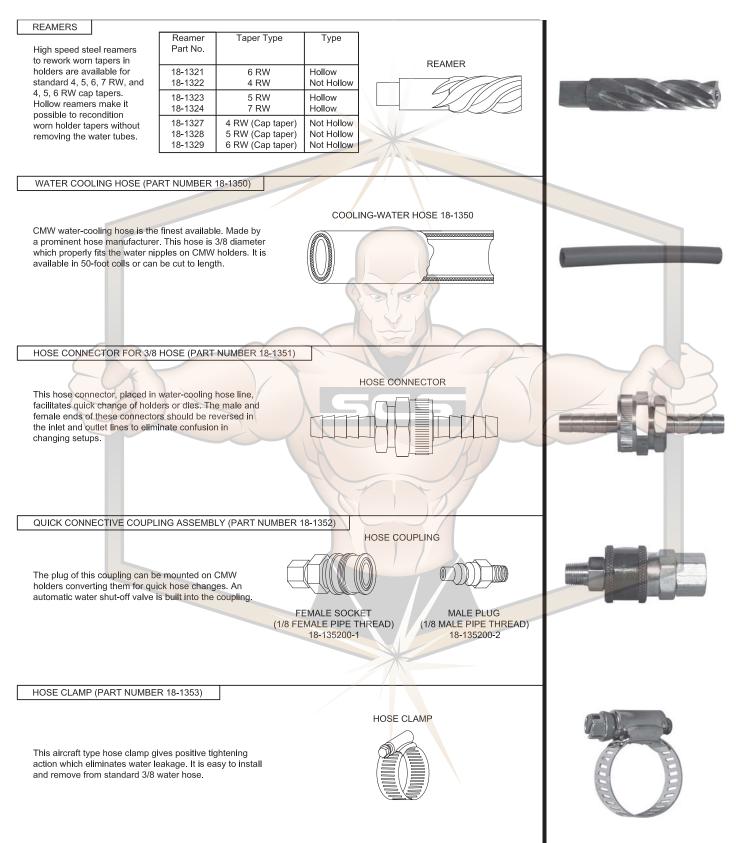

MULTI-SPOT WELDER ELECTRODE ADAPTERS

MULTI-SPOT WELDER ELECTRODE ADAPTERS

CMW electrode adapters for multispot air or hydraulic pistons are supplied with 3/4 diameter straight piston rod ends. These adapters are equipped with means for attaching the welding cable from the transformer and the water hoses to the inlet and outlet water connections.


These adapters are available in four basic assemblies as shown in the table.

WELDING MACHINE CONTROL CONTACTORS


CMW°353 material has the ability to interrupt the current in a short time with minimum arc hangover. Because of the arc resistant characteristics of the metal, only the desired number of cycles of current are transmitted to the welding machine. Uniform welding quality is obtained because no additional current passes through the control, since CMW° 353 material tends to prevent the arc from restriking.

Contactor Part No.	Overall Length A	Width B	Height C	D	E	G	Hole Dia. H
16-1303	1-3/4	1	1-3/8	1/2	1/2	7/16	7/16
16-1304	1-5/8	7/8	1-1/4	3/8	7/16	7/16	11/32
16-1306	1-5/16	3/4	1-1/16	5/16	3/8	3/8	11/32
16-1307	1-1/2	1	1-1/2	3/8	1/2	1/2	11/32
16-1309	1-1/4	7/8	1-1/4	3/8	7/16	15/32	25/64

16-1303

ACCESSORIES, REAMERS, WATER HOSE, HOSE CONNECTOR, HOSE COUPLING & HOSE CLAMP

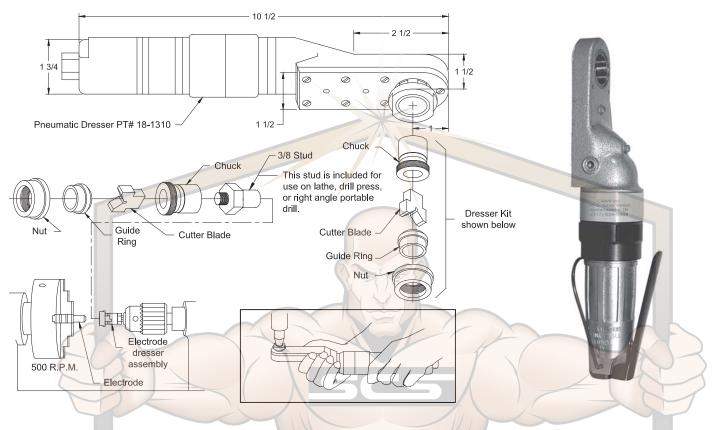
ACCESSORIES

CAP ELECTRODE EXTRACTOR FORK

CAP ELECTRODE EXTRACTOR FORK PART NO. 18-1381-1 FOR 5 RW CAPS PART NO. 18-1381-2 FOR 4 RW CAPS PART NO. 18-1381-3 FOR 6 RW CAPS

These hardened steel wedge type forks will make the removal of electrodes caps quick and easy. They can be used on both male and female caps.

AIR POWERED ELECTRODE EXTRACTOR


AIR POWERED ELECTRODE EXTRACTOR PART NO. 18-1382-1 FOR 6 RW ELECTRODES PART NO. 18-1382-3 FOR 5 RW ELECTRODES

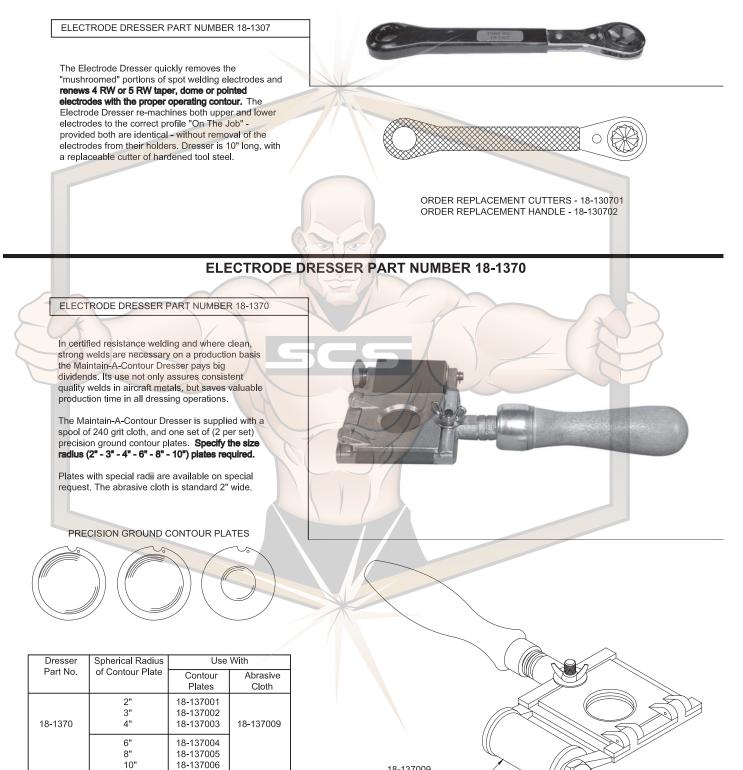
This high quality air powered electrode extractor comes in two standard sizes for extracting 5 RW and 6 RW male and female cap and standard straight electrodes. Air pressure recommendations suggested between 85 PSI minimum and 100 PSI maximum. Ideal pressure is 90 PSI. Standard 3/8 diameter air nipple and quick change plug included with extractor.

PNEUMATIC POWER HANDLE ELECTRODE DRESSER PART NO. 18-1310

Light weight and rugged construction, this CMW Pneumatic Power Handle requires a clearance of only 1-1/2" with a standard ring and 2" with an extended ring. In most situations this allows dressing of electrodes without removal from the welder. Operating at a cutting speed of 1200 rpm, it enables the operator to dress electrodes quickly and accurately. Cutters and guide rings are easily replaced. These must be matched to the electrode nose and are selected from the chart below.

CMW Electrode Dresser 18-1310 is supplied without blade holder, ring, and cutter blade. When ordering, specify the "Kit" appropriate for your dressing needs as selected from the table below. "The stud" furnished with the kit is not required when using the Pneumatic Power Handle. It may optionally be used, but will increase the clearance required on the welder for dressing. Additional special cutters can be furnished upon special request.

Size To Dress									
	Nose style CMW Electrode No.	Dome x11x	Pointed x21x	Flat x31x	2" Radius x51x	3" Radius x81x	4" Radius x91x	10" Radius x61x	Truncated x71x
4 RW .482 Dia	Kit to Order**	18-1390411	18-1390420	18-1390410	18 <mark>-1</mark> 390413	18-1390414	18-1390415	18-1390416	18-1390412
.402 Dia	Replacement Blade Replacement Guide Ring (Each for above kit)	18-139411 18-139401	18-139420 18-139402	18-139410 18-139401	18-1 <mark>39</mark> 413 18-139401	18-139414 18-139401	18-139415 18-139401	18-139416 18-139401	18-139412 18-139401
	CMW Electrode No.	x12x	x22x	x32x	x52x	x82x	x92x	x62x	x72x
5 RW	Kit to Order**	18-1390511	18-1390520	18-1390510	18-1390513	18-1390514	18-1390515	18-1390516	18-1390512
.625 Dia	Replacement Blade Replacement Guide Ring (Each for above kit)	18-139511 18-139501	18-139520 18-139502	18-139510 18-139501	18-139513 18-139501	18-139514 18-139501	18-139515 18-139501	18-139516 18-139501	18-139512 18-139501


These kits may also be used for cap electrode dressing.

** Note: This kit includes Stud for (for 3/8 Keyed Chuck), Chuck, 1 Guide Ring, 1 Appropriate blade, and Retaining Nut. Note: Cutters are **NOT** designed to conform to "Electrode Cap" geometries. Caps are intended for value salvage when expended.

ELECTRODE DRESSER PART NUMBER 18-1307

18-137009 REPLACEABLE 2" ROLL ABRASIVE CLOTH WELDING BAR AND ROD STOCK

SOUTHERN COPPER & SUPPLY COMPANY, INC. 800-289-2728

DIAMETER	RWMA	<u>anna (</u> ®	CMW	WEIGHT/LBS.			
THK. WTH. (INCHES)	ALLOY CLASS NO.	CMW [®] ALLOY NO.	PART NUMBER	INCH	FOOT		
Rounds	02.001.01						
1/8	2	CMW [®] 3	58704	.012	.147		
1/4	2	CMW [®] 3	58707	.016	.192		
3/8	2 2	CMW [®] 3	58712	.035	.420		
7/16	2	CMW [®] 3	58713	.048	.576		
.482	2	CMW [®] 3 CMW [®] 28	50333	.058	.696		
.482 1/2	1 2	CMW®3	65256 58715	.058 .063	.696 .756		
1/2	1	CMW [®] 28	64124	.063	.756		
5/8	1	CMW [®] 28	64126	.099	1.188		
1/2	3	CMW [®] 100	75836	.063	.756		
5/8	2	CMW [®] 3	58716	.099	1.188		
5/8	3	CMW [®] 100 CMW [®] 3	75835	.099	1.188		
3/4 7/8	2	CMW [®] 3	58708 58719	.142 .193	1.704 2.316		
7/8	2	CMW [®] 100	75736	.193	2.316		
1.0	2	CMW [®] 3	58710	.251	3.012		
1-1/4	2 3 2 2	CMW [®] 3	58720	.395	4.740		
1-1/4	3	CMW [®] 100	59035	.395	4.740		
1-1/2	3 2 2	CMW [®] 3	58724	.568	6.816		
1.510 2.0	2 2	CMW [®] 3 CMW [®] 3	52217 58731	.570 1.010	6.840 12.120		
2.0	2 3	CMW [®] 100	75838	1.010	12.120		
2-1/2	2	CMW®3	58767	1.580	18.960		
3-1/8	2	CMW [®] 3	51235	2.470	29.640		
Hex					(n)		
.250 Hex	2	CMW [®] 3	7907 <mark>2</mark>	.013	.156		
.375 Hex	3	CMW [®] 100	79993	.029	.348		
.438 Hex .438 Hex	23	CMW [®] 3 CMW [®] 100	79556 79544	.040 .040	.480		
.500 Hex	2	CMW [®] 3	76569	.040	.624		
.500 Hex	3	CMW [®] 100	75450	.052	.624		
.625 Hex	2 2	CMW [®] 3	68487	.081	.972		
.750 Hex	2	CMW [®] 3	58755	.117	1.404		
.750 Hex	3	CMW [®] 100	78781	.117	1.404		
.875 Hex 1.000 Hex	2 2	CMW [®] 3 CMW [®] 3	58756 58655	.160 .208	1.920 2.496		
1.000 Hex	2 3	CMW [®] 100	55848	.208	2.496		
1.125 Hex	2	CMW [®] 3	52956	.264	3.168		
1.125 Hex	3	CMW [®] 100	79933	.264	3.168		
1.250 Hex	2	CMW [®] 3	73784	.326	3.912		
1.250 Hex	3	CMW [®] 100	67490	.326	3.912		
1.500 Hex	3	CMW [®] 100	50561	.469	5.628		
Squares and Rect							
1/4 x 1-1/2	2	CMW [®] 3 CMW [®] 3	58881	.120	1.440		
1/2 x 1/2 5/8 x 5/8	2 2	CMW®3 CMW®3	58766 58677	.080 .125	.960 1.500		
1 x 1	2	CMW [®] 3	58690	.320	3.840		
1 x 1-1/2	2	CMW [®] 3	50322	.480	5.760		
1 x 2	2	CMW [®] 3	58759	.640	7.680		
1 x 3	2	CMW [®] 3	50324	.960	11.520		
1-1/2 x 3	2	CMW [®] 3	74630	1.440	17.280		
	3 4	CMW [®] 353 CMW [®] 73					
	4 5	ELKALOY [®] D	VARIOUS SHAPES AND S AVAILABLE IN THESE		012E3		
	10	ELKONITE [®] 1W3	MATER				
	11	ELKONITE [®] 10W3	CONSI				
	12	ELKONITE [®] 30W3	CUSTOMER SERVICE FOR				
	13	ELKON [®] 100W		FORMATION.			
	14	ELKON [®] 100M					
<u> </u>			1				

ELKONITE[®] BAR STOCK

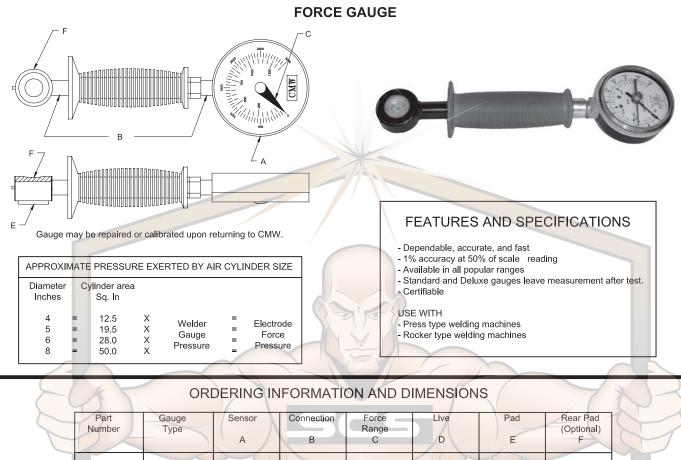
TYPICAL PROPERTIES OF ELKONITE[®] MATERIALS (See CMW Inc. Catalog Series 200)

	omposition by Weight	Densi g/cm or (Mg/m ³)		Elec Conductivity %IACS	trical Resistivity (n-ohm-m)	Theor Thermal Btu-h ¹ -ft ¹ -F ¹	etical Conductivity (W-m ¹ -K ¹)		Modulus c In Bei psi		ASTM Specification
3W3 6 5W3 7 10W3 7 10W53 7	5W:45Cu 8W:32Cu 0W:30Cu 5W:25Cu 5W:25Cu* 0W:20Cu	12.50 13.93 14.18 14.84 14.79 15.56	.452 .503 .512 .536 .534 .562	53 50 48 45 28 41	(32.5) (34.5) (35.9) (38.3) (61.6) (42.1)	180 160 160 150 85 145		77HRB 90HRB 95 HRB 98 HRB 109 HRB 103 HRB	110.000 130.000 140.000 150.000 200.000 170.000	(758) (896) (965) (1030) (1380) (1170)	B702 B702 B702 B702 B702 B702 B702
TC10 50	0WC:50Cu 6WC:44Cu 0WC:30Cu	11.26 11.64 12.65	.408 .421 .457	45 42 30	(38.3) (41.0) (57.5)	170 160 140	(290) (280) (240)	94 HRB 100 HRB 37 HRC	160.000 180.000 200.000	(1100) (1240) (1380)	

*Cu Alloy 10W53 FULLY HEAT TREATED

ELKONITE[®] 10W3 ROUND BARS-8 INCH LENGTH

	FINISHED DIAMETER	PART NUMBER	FINISHED DIAMETER	PART NUMBER
	1/8	15-140200-64	3/4	15-141200-64
	3/16	15-140300-64	7/8	15-141400-64
	1/4	15-140400-64	1	15-141600-64
	5/16	15-140500-64	1-1/8	15-141800-64
	3/8	15-140600-64	1-1/4	15-142000-64
	7/16	15-140700-64	1-3/8	15-142200-64
7	1/2	15-140800-64	1-1/2	15-142400-64
	9/16	15-140900-64	1-3/4	15-142800-64
	5/8	15-141000-64	2	15-143200-64


ELKONITE[®] 10W3 RECTANGULAR BARS-8 INCH LENGTH

SIZE	-INCHES		SIZE	-INCHES		SIZE	-INCHES	
THICK	WIDTH	PART NUMBER	THICK	WIDTH	PART NUMBER	THICK	WIDTH	PART NUMBER
1/8	1/8 1/4 5/16 3/8 1/2 5/8 3/4 1 1-1/4	15-140202-64 15-140402-64 15-140502-64 15-140602-64 15-140802-64 15-141002-64 15-141202-64 15-141602-64 15-142002-64	5/16	5/16 3/8 1/2 5/8 3/4 1 1-1/4 1-1/2 2 4	15-140505-64 15-140605-64 15-140805-64 15-141005-64 15-141205-64 15-142005-64 15-142405-64 15-142405-64 15-142605-64	1/2	1-1/2 2 4 5/8 3/4 1 1-1/4 1-1/2 2	15-142408-64 15-143208-64 15-146408-64 15-141010-64 15-141210-64 15-141610-64 15-142010-64 15-142410-64 15-143210-64
3/16	1-1/2 2 4 3/4 1/4 5/16	15-142402-64 15-143202-64 15-146402-64 15-141203-64 15-140404-64 15-140504-64	3/8	3/8 1/2 5/8 3/4 7/8	15-140606-64 15-140806-64 15-141006-64 15-141206-64 15-141406-64	3/4	4 3/4 1 1-1/4 1-1/2 2 4	15-146410-64 15-141212-64 15-141612-64 15-142012-64 15-142412-64 15-143212-64
1/4	3/8 15-140604-64 1/2 15-140804-64 5/8 15-141004-64 3/4 15-141204-64 1 15-141604-64 1-1/4 15-142004-64		1-1/4 1-1/2 2 4 1/2	15-141606-64 15-142006-64 15-142406-64 15-143206-64 15-146406-64 15-140808-64	1	4 1 1-1/4 1-1/2 2 4	15-146412-64 15-141616-64 15-142016-64 15-142416-64 15-143216-64 15-146416-64	
	1-1/2 2 4	15-142404-64 15-143204-64 15-146404-64	1/2	5/8 3/4 1 1-1/4	15-141008-64 15-141208-64 15-141608-64 15-142008-64	1-1/4 2	1-1/4 1-1/2 2	15-142020-64 15-142420-64 15-143232-64

*Contact Factory For Additional Sizes

LC2564-73	STANDARD	LC <u>2</u>	L	C2 <u>5</u>	LC25 <u>64</u>	LC2564-7	LC2564-7 <u>3</u>	-	
LC2164-7391	DELUXE	LC <u>2</u>		_C2 <u>1</u>	LC21 <u>64</u>	LC2164- <u>7</u>	LC2164-7 <u>3</u>	LC2164-73 <u>91</u>	
LC8568-73	DIGITAL	LC <u>8</u>	1	_C8 <u>5</u>	LC85 <u>68</u>	LC8568- <u>7</u>	LC8568-7 <u>3</u>	-	

CREATE GAUGE NUMBER FROM BUILD A FORCE GAUGE OPTIONS BELOW FOR GAUGE TO SUIT YOUR NEEDS

LC = Load Cell Sensor A	Connection B	Force Range C	Live	Pad E	Rear Pad (Optional) F
1= CUSHIONED SENSOR	1 = FLEX/SW 15° 11" OAL *	5 2 = 300	7	1 = FLAT POLY	91 = FLAT*
2 = 2.5 W/POINTER ^ *	2 = FLEX/SW 90° 15" OAL	56 = 600	7	2 = FLAT SS	
3 = 4.0 W/O POINTER	3 = FLEX/SW 180° 19" OAL	6 0 = 1000	7	3 = 3/4" LOCATOR POLY ^ *	
4 = 4.0 W/POINTER	4 =	6 4 = 2000 ^ *	7	4 = 3/4" LOCATOR SS	
5 = 4.5 PROCESS	5 = STANDARD 5" GRIP ^	6 6 = 3000	7	5 = 5" RADIUS POLY	
6 = 4.5 W/POINTER	6 = 6" O.A. W/O GRIP	6 8 = 5000 ¹	7	6 = 5" RADIUS SS	
7 = CUSTOM	7 = UNDER 7" O.A.	7 2 = 10000 ²	7	7 = THIN (LOW PROFILE)	
8 = DIGITAL	8 = SWIVEL ONLY	¹ MUST ADD SS LIVE PAD	7	8 = THIN (POLY)	
9 =	9 =	² SS LIVE PAD AND FLAT REAR PAD	7	9 = THIN (SS)	

Metal Thickness	.020	.030	.035	.040	.050	.060	.078	.093	.125
G-CAP	244	254	254	254	255	255	266	266	266
Pressure	300	400	500	650	750	800	1000	1200	1400
Squeeze cycle	25	25	25	25	30	30	30	35	35
Up-Slope cycle					4	4	4	4	5
Upslope				-//	2.0	2.0	2.0	2.0	2.0
Kiloamps					to S.C.*				
Weld cycle	6	8	9	10	7	8	10	12	10
Kiloamps	8.5	9.0	9.5	10.0	10.5	11.0	11.5	12.5	13.5
Cool cycle					1	1	1	1	1
Weld cycle					7	8	10	12	10
Kiloamps				A' C	10.5	11.0	11.5	12.5	13.5
Cool cycle				NYY Y					1
Weld cycle			X						10
Kiloamps					h	FY		X	13.5
Hold cycle	3	4	4	5	5	10	10	15	20
* S.C Startin	ng Weld C	Current							

S.C. - Starting Weld Current

		GCAP	[®] LINEA	R STEPP	ER		
Total Weld Count	500	1,000	3,000	5,000	7,500	10,000	12,000
Total Amps Boost	600	1000	3000	5000	6800	8400	9200
Amps Boost Per	1.20		.88			.60	
Weld							

The above schedules and stepper is only meant to be a guide and will require adjustments to fit the application.

APPLICATION DATA SHEET

SPOT WELDING DATA **OPTIMUM CONDITIONS** SCHEDULES FOR SPOT WELDING LOW CARBON STEEL-SAE 1010

	Electro	de Diamete	rs and Shape*							Diameter	Minimum Weld	Minimum
	Flat Face	9 F	Radius Face							of Fused Zone (Approx.)	Spacing	Contacting Overlap
Thick- ness of Thinnest						Weld Time (Cycles) (60	Hold	Welding	Weld Shear Strength (For Steels Having Ultimate Tensile Strength of 90,000			
Outside Piece (Inches)	Maximum d (Inches)	Min. D (Inches)	Radius R (Inches)	Recommended Minimum Standard Electrode Size	Weld Force (Lbs.)	Cycles per Sec.)	Time (Cycles) Min.	Current (Amps.) (Approx.)	psi and below) Minimum Strength (Lbs/Weld)	Dw (Inches)	S (Inches)	L (Inches)
0.010 0.021 0.031 0.040 0.050	0.125 0.187 0.187 0.250 0.250	1/2 1/2 1/2 5/8 5/8	2 2 2 3 3	4RW 1MT 4RW 1MT 4RW 1MT 5RW 2MT 5RW 2MT	160 244 326 412 554	6 8 10	5 8 10 12 16	4,000 6,500 8,000 8,800 9,600	130 300 530 812 1,195	0.113 0.139 0.161 0.181 0.210	1/4 3/8 1/2 3/4 7/8	3/8 7/16 7/16 1/2 9/16
0.062 0.078 0.094 0.109 0.125	0.250 0.312 0.312 0.375 0.375	5/8 5/8 5/8 7/8 7/8	3 3 4 4 4	5RW 2MT 5RW 2MT 7RW 3MT 7RW 3MT 7RW 3MT	670 903 1,160 1,440 1,760	25 34 45	20 30 35 40 45	10,600 11,800 13,000 14,200 15,600	1,717 2,365 3,054 3,672 4,300	0.231 0.268 0.304 0.338 0.375	1 1-1/8 1-1/4 1-5/16 1-1/2	5/8 11/16 3/4 13/16 7/8
0.156 0.187	0.500 0.625	7/8 1	6 6	Male or Female Threaded Male or Female Threaded	2,500 3,340		50 55	18,000	6,500 9,000	0.446 0.516	1-3/4 2	1 1-1/2
0.250	0.750	1-1/4	6	Male or Female Threaded	5,560	230	60	26,000	18,000	0.660	4	1-1/2

PERMISSIBLE SCHEDULE VARIATIONS FOR SPOT WELDING LOW CARBON STEEL Low Carbon Steel Spot Welding Data Chart-Single Impulse Welding

	DATA COMMON TO ALL CLASSES WELDING SET-UP FOR BEST WELDING SET-UP FOR MEDIUM WELDING SET-UP FOR GOOD																		
DAT													P FOR MEDIU	M				P FOR GOOL SS C WELDS)
			Min. Weld Spacing (Note 4) Inches	Min. Con- tacting Overlap (Note 6) Inches	Weld Time (Note 7) Cycles	Elec- trode Force Pounds	Weld- ing Cur- rent Amps.	Diam. of Fused Zone Dw Inches	Average Tensile Shear Strength ±14% Pounds	Weld Time (Note 7) Cycles	Elec- trode Force Pounds	Weld- ing Cur- rent Amps.	Diam. of Fused Zone Dw Inches	Average Tensile Shear Strength ±17% Pounds	Weld Time (Note 7) Cycles	Elec- trode Force Pounds	Weld- ing Current Amps.	Diam. of Fused Zone	Average Tensile Shear Strength ±20% Pounds
.010 .021 .031 .040 .050	1/2 1/2 1/2 5/8 5/8	1/8 3/16 3/16 1/4 1/4	1/4 3/8 1/2 3/4 7/8	3/8 7/16 7/16 1/2 9/16	4 6 8 10 12	200 300 400 500 650	4000 6100 8000 9200 10300	.13 .17 .21 .23 .25	235 530 980 1305 1820	5 10 15 21 24	130 200 275 360 410	3700 5100 6300 7500 8000	.12 .16 .20 .22 .23	200 460 850 1230 1700	15 22 29 38 42	65 100 135 180 205	3000 3800 4700 5600 6100	.11 .14 .18 .21 .22	160 390 790 1180 1600
.062 .078 .094 .109 .125	5/8 5/8 5/8 7/8 7/8	1/4 5/16 5/16 3/8 3/8	1 1-1/8 1-1/4 1-5/16 1-1/2	5/8 11/16 3/4 13/16 7/8	14 21 25 29 30	800 1100 1300 1600 1800	11600 13300 14700 16100 17500	.27 .31 .34 .37 .40	2350 3225 4100 5300 6900	29 36 44 50 60	500 650 790 960 1140	9000 10400 11400 12200 12900	.26 .30 .33 .36 .39	2150 3025 3900 5050 6500	48 58 66 72 78	250 325 390 480 570	6800 7900 8800 9500 10000	.25 .28 .31 .35 .37	2050 2900 3750 4850 6150

NOTES:

- 1. Low Carbon Steel as hot rolled, pickled, and slightly oiled with an ultimate strength of 42,000 to 45,000 PSI Similar to SAE 1005-SAE 1010. 2. Electrode Material is CMW[®] 3.
- 3. Surface of steel is lightly oiled but free from grease, scale or dirt.4. Minimum weld spacing is that distance for which no increase in welding current is neces-
- sary to compensate for the shunted current effect in adjacent welds.
- Radius Face electrodes may be used: 0.010 to 0.031 2" Radius 0.031 to 0.078 3" Radius

- 7. Weld time is indicated in cycles of 60 cycle frequency.
- 8. Tensile shear strength values are based on recom-mended test sample sizes: Direction of Force Thickness Width Length

		.000" to .029"	5/8"	3"
		.030" to .058"	1"	4"
		.059" to .115"	1-1/2"	5"
-	└────────	.116" to .190"	2"	6"

- 9. Tolerance for machining of electrode diameter "d" is
- ±.015" of specified dimension.10. Electrode force does not provide for force to press ill-fitting parts together.

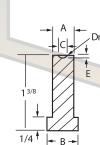
PROJECTION WELDING DATA

DESIGN AND WELDING DATA FOR PROJECTION WELDING LOW CARBON STEELS

	PROJECTI	ON DESIGN	ELECTRODE	-								
Thickness				d -					Diameter of Fused Zone	Minimum Shear Strength (Single Projection Only)	Minimum Contacting Overlap	
of Thinnest Outside Piece Inches	Base Diameter of Projection Dp Inches	Height of Projection H Inches	Minimum d Inches	D Minimum D Inches	Electrode Force Pounds	Weld Time (Cycles) 60 Cycles per Sec.	Hold Time (Cycles) Minimum	Welding Current Amperes (Approx.)	Dw Inches	(For Steels Having Strength of 100,000 psi and below) Pounds	= 2 DP MIN. 	
0.010 0.012 0.014 0.016 0.021	0.055 0.055 0.055 0.067 0.067	0.015 0.015 0.015 0.017 0.017	0.125 0.125 0.125 0.187 0.187	1/2 1/2 1/2 1/2 1/2 1/2	50 80 100 115 150	3 3 3 4 6	3 3 3 3 4 6	2,800 3,100 3,400 3,600 4,000	0.112 0.112 0.112 0.112 0.112 0.140	150 200 250 285 380	1/8 1/8 1/8 5/32 5/32	
0.025 0.031 0.034 0.044 0.050	0.081 0.094 0.094 0.119 0.119	0.020 0.022 0.022 0.028 0.028	0.187 0.187 0.187 0.250 0.250	1/2 1/2 1/2 5/8 5/8	200 300 350 480 580	6 8 10 13 16	8 8 10 14 16	4,500 5,100 5,400 6,500 7,100	0.140 0.169 0.169 0.169 0.169 0.225	525 740 900 1,080 1,500	3/16 7/32 7/32 9/32 9/32	
0.062 0.070 0.078 0.094 0.109	0.156 0.156 0.187 0.218 0.250	0.035 0.035 0.041 0.048 0.054	0.312 0.312 0.375 0.500 0.500	7/8 7/8 7/8 7/8 7/8 7/8	750 900 1,050 1,300 1,650	21 24 26 32 38	20 24 30 30 36	8,400 9,200 10,500 11,800 13,300	0.225 0.281 0.281 0.281 0.281 0.338	2,100 2,550 2,950 3,700 4,500	3/8 3/8 7/16 1/2 5/8	
0.125 0.140 0.156 0.171 0.187	0.281 0.312 0.343 0.375 0.406	0.060 0.066 0.072 0.078 0.085	0.500 0.625 0.625 0.750 0.750	7/8 1 1 1	1,800 2,300 2,800 3,300 3,800	45 60 80 105 125	40 45 50 50 50	15,000 15,700 17,250 18,600 20,000	0.338 0.437 0.500 0.562 0.562	5,200 6,000 7,500 8,500 10,000	11/16 3/4 13/16 7/8 15/16	
0.203	0.437 0.531	0.091 0.110	0.875	1-1/4 1-1/4	4,500 6,600	145 230	55 60	21,500 26,000	0.625 0.687	12,000 15,000	1 1-1/4	

NOTES:

 Type of Steel—Low Carbon SAE 1010—0.15% Carbon Maximum.
 Material free of scale, oxide, paint, dirt, etc.
 Size of projection determined by thickness of thinnest piece and projection should be on thickest piece. 4. Data is based on thickness of thinnest sheet for two thicknesses only.


Maximum ratio between two thicknesses = 3 to 1

See TABLE BELOW for design of punch and die for making projections.
 Contacting overlap does not include any radii from forming.
 Projection should be located in center of overlap.

8. Tolerance for Projection Dimensions:

From American Welding Society "Recommended Practices for Resistance Welding"

Die

Material: Tool Steel.

R

A

PUNCH AND DIE DESIGN FOR FORMING WELDING PROJECTIONS

R Punch Insert Punch Plug Fit

Die Insert

	1 3/8	Jr		
		1	-1 1-	

Mat Thickness	Pt. No.	А	В	±.002 C	Dr	±.001 E	±.001 F	±.001 H	Jr
0.010-0.015 0.016-0.021 .025 .031 .034	1 2 3 4 5	3/8 3/8 3/8 3/8 3/8 3/8	9/16 9/16 9/16 9/16 9/16	.067 .081 .094	.033 .042 .050 .062 .062	.015 .017 .020 .022 .022	.015 .020 .025 .030 .030	.035 .039 .044 .050 .050	.005 .005 .005 .005 .005
.044 .050 .062 .070 .078	6 7 8 9 10	3/8 3/8 3/8 3/8 3/8 3/8	9/16 9/16 9/16 9/16 9/16	.119 .156 .156	.078 .078 .105 .105 .128	.028 .028 .035 .035 .041	.035 .035 .043 .043 .055	.062 .062 .081 .081 .104	.005 .005 .005 .005 .005 .010

Thickness	Pt. No.	А	В	±.002 C	Dr	±.001 E	±.001 F	±.001 H	Jr
.094 .109 .125 .140 .156	11 12 13 14 15	1/2 1/2 1/2 1/2 5/8	11/16 11/16 11/16 11/16 13/16	.250 .281 .312	.148 .172 .193 .217 .243	.048 .054 .060 .066 .072	.065 .075 .085 .096 .107	.115 .137 .154 .172 .191	.010 1/64 1/64 1/64 1/64
.171 .187 .203 .250	16 17 18 19	5/8 5/8 11/16 13/16			.265 .285 .308 .375	.078 .085 .091 .110	.118 .130 .143 .175	.210 .229 .240 .285	1/64 1/64 .020 .025

Finish all over and harden to 65-68 Rockwell "C" scale.

Note: All working surfaces of die unit must be polished.

From American Welding Society "Recommended Practices for Resistance Welding"

73

Diameter "D" Height "H" ±0.002" 9. Electrode Material:

CMW®100 ELKONITE®TC-10 ELKONITE®10W3

Dimension

Up to 0.050 ±0.003" Over 0.050" ±0.007"

Thickness

Thickness

±0.005"

SCHEDULE FOR SPOT WELDING STAINLESS STEEL

THICKNESS "T" of THINNEST OUTSIDE PIECE (See Notes		ODE DIAMETER SHAPE Note 5) OR		WELD	CUR (App	DING RENT vrox.) IPS		MINIMUM WELD SPACING (See Note 6 Below)	DIAMETER OF FUSED ZONE		I SHEAR ST LB. ensile Strengt	-
1, 2, 3 and 4 Below) INCHES	← D → D, IN., Min.	d, IN., Max.	ELECTRODE FORCE LB.	CYCLES (60 Per Sec.)	Tensile Strength Below 150000 Psi	Tensile Strength 150000 Psi and Higher	IN.	to L IN.	IN. Approx.	70000 Up to 90000 Psi	90000 Up to 150000 Psi	150000 Psi and Higher
0.006	3/16	3/32	180	2	2000	2000	3/16	3/16	0.045	60	70	85
0.008	3/16	3/32	200	3	2000	2000	3/16	3/16	0.065	150	170	210
0.012	1/4	1/8	260	3	2100	2000	1/4	1/4	0.076	185	210	250
0.014	1/4	1/8	300	4	2500	2200	1/4	1/4	0.082	240	250	320
0.016 0.018 0.021 0.025 0.031	1/4 1/4 1/4 3/8 3/8	1/8 1/8 5/32 5/32 3/16	330 380 400 520 650	4 4 5 5	3000 3500 4000 5000 6000	2500 2800 3200 4100 4800	1/4 1/4 5/16 3/8 3/8	5/16 5/16 5/16 7/16 1/2	0.088 0.093 0.100 0.120 0.130	280 320 370 500 680	300 360 470 600 800	380 470 500 680 930
0.034	3/8	3/16	750	6	7000	5500	7/16	9/16	0.150	800	920	1100
0.040	3/8	3/16	900	6	7800	6300	7/16	5/8	0.160	1000	1270	1400
0.044	3/8	3/16	1000	8	8700	7000	7/16	11/16	0.180	1200	1450	1700
0.050	1/2	1/4	1200	8	9500	7500	1/2	3/4	0.190	1450	1700	2000
0.056	1/2	1/4	1350	10	10300	8300	9/16	7/8	0.210	1700	2000	2450
0.062	1/2	1/4	1500	10	11000	9000	5/8	1	0.220	1950	2400	2900
0.070	5/8	1/4	1700	12	12300	10000	5/8	1-1/8	0.250	2400	2800	3550
0.078	5/8	5/16	1900	14	14000	11000	11/16	1-1/4	0.275	2700	3400	4000
0.094	5/8	5/16	2400	16	15700	12700	3/4	1-1/2	0.290	3550	4200	5300
0.109	3/4	3/8	2800	18	17700	14000	13/16	1-1/2	0.290	4200	5000	6400
0.125	3/4	3/8	3300	20	18000	15500	7/8	2	0.300	5000	6000	7600

NOTES:

1. Types of Steel-301, 302, 303, 304, 308, 309, 310, 316, 317, 321, 347 & 349

2. Material should be free from scale, oxides, paint, grease and oil. 3. Welding conditions determined by thickness of thinnest outside piece "T."

4. Data for total thickness of pile-up not exceeding 4 "T". Maximum ratio between two thicknesses 3 to 1.

5. Electrode Material, CMW® 3, CMW® 100, or ELKONITE® 10W3 6. Minimum weld spacing is that spacing for two pieces for which no special precautions need be taken to compensate for shunted current effect of adjacent welds. For three pieces increase spacing 30 per cent.

SCHEDULE FOR SEAM WELDING STAINLESS STEEL

									~		
THICKNESS "T" OF THINNEST OUTSIDE PIECE (See Notes 1, 2, 3 and 4 Below) INCHES	ELECTRODE WIDTH AND SHAPE (See Note 5 Below) R=3"	ELECTRODE FORCE LB.	ON TIME CYCLES (60 Per Sec.)	OFF 1 FOR MA SPE (Pressur CYCI 2 "T"	XIMUM ED e-Tight)	WELD	IMUM SPEED MINUTE 4 "T"		ELDS NINCH 4 "T"	WELDING CURRENT (Approx.) AMPS.	MINIMUM CONTACTING OVERLAP (See Note 6 Below)
INCHES	vv, IIN., IVIIII.	LD.	(60 Fer Sec.)	2 1	4 1	2/1	4 1	2 1	4 1	AIVIP 5.	IN.
0.006 0.008 0.010 0.012 0.014 0.016 0.018 0.021 0.025 0.031	3/16 3/16 1/4 1/4 1/4 1/4 1/4 1/4 3/8 3/8	300 350 400 450 500 600 650 700 850 1000	2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	1 2 2 2 2 2 2 2 2 2 2 3 3	1 2 2 2 3 3 3 3 3 4 4	60 67 45 48 51 55 55 55 50 50	67 56 51 55 46 50 55 55 47 47	20 18 16 15 14 14 13 13 12 12	18 16 14 13 13 12 12 12 11 11 11	4000 4600 5000 6200 6700 7300 7900 9200 10600	1/4 1/4 5/16 5/16 5/16 5/16 3/8 7/16 7/16
0.040 0.050 0.062 0.070 0.078 0.094 0.109 0.125	3/8 1/2 1/2 5/8 5/8 5/8 3/4 3/4 3/4	1300 1600 1850 2150 2300 2550 2950 3300	3 4 4 4 5 5 6	4 4 5 5 6 7 6	5 5 7 7 7 7 7 9 8	47 45 40 44 40 36 38 38 38	45 44 41 41 38 37 37	11 10 9 9 9 8 8 8	10 9 8 8 8 7 7 7	13000 14200 15100 15900 16500 16600 16800 17000	1/2 5/8 5/8 11/16 11/16 3/4 13/16 7/8

NOTES:

1. Types of Steel-301, 302, 303, 304, 308, 309, 310, 316, 317, 321, 347 & 349.

 Material should be free from scale, oxides, pain, graze and oil.
 Welding conditions determined by thickness of thinnest outside piece "T."
 Data for total thickness of pile-up not exceeding 4 "T". Maximum ratio between two thicknesses 3 to 1.

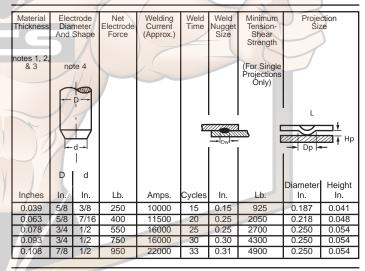
5. Electrode material, CMW[®] 100

6. For large assemblies minimum contacting overlap indicated should be increased 30 per cent.

From American Welding Society "Recommended Practices for Resistance Welding"

APPLICATION DATA SHEET

	Material Thickness	Ī	Electro Diamet nd Sha	er	Net Electrode Force	Welding Current (Approx.)	Weld Time	Weld Nugget Size	Minimum Tension- Shear Strength	Minimum Weld Spacing	Contacting
	notes 1, 2, & 3		note 4	1							
		X					Ø				
		D	d	Oc							
	Inches	ln.	ln.	Deg.	Lb.	Amps.	Cycles	ln.	Lb.	Inches	Inches
	0.022	5/8	3/16	120	300	13000	8	0.15	550	5/8	5/8
	0.030	5/8	3/16	120	400	13000	10	0.16	1000	5/8	5/8
	0.036	5/8	1/4	120	500	13500	12	0.19	1180	3/4	5/8
	0.039	5/8	1/4	120	650	14000	13	0.21	1400	3/4	5/8
	0.052	5/8	1/4	120	725	14500	18	0.22	1700	7/8	11/16
	0.063	3/4	1/4	120	850	15500	22	0.24	2500	1-1/8	3/4
1	0.078	3/4	5/16	120	1200	19000	24	0.28	3200	1-1/4	7/8
1	0.093	3/4	3/8	120	1400	21000	30	0.34	4200	1-1/2	1
1	0.108	7/8	3/8	120	1750	20000	37	0.40	5900	1-3/4	1-1/8
-	0.123	7/8	3/8	120	2000	20000	42	0.48	7200	2	1-1/8


Spot welding galvanized low-carbon steel

NOTES:

- 1. Material must be free from dirt, grease, paint etc. prior to welding, but may have light oil.
- 2. Two equal metal thicknesses of each gage.
- 3. Commercial coating weight is 1.25 oz. per square foot.
- 4. Electrode Material-RWMA Group A, Class 2. CMW[®] 3.
- 5. Water Cooling: 2 gallons per minute.

Projections should be larger in diameter for galvanized than for uncoated material.

Projection welding galvanized low-carbon steel

Seam welding galvanized low-carbon steel

Material Thickness		trode dth Shape	Net Electrode Force	Welding Current (Approx.)	We Tin		Welding Speed	Welds Per Inch	Minimum Contacting Overlap
notes 1, 2, & 3	not	e 4 -₩							877777
	30~	\square			Heat Time	Cool Time			
	· w	- E E							Sales of the second sec
	**	-							
Inches	ln.	ln.	Lb.	Amps.	Cycles	Cycles	In./Min.	W/ln.	Inches
0.015	3/8	1/4	900	15000	2	2	120	7.5	3/8
0.036	1/2	1/4	1100	18000	4	2	60	10.0	1/2
0.039	1/2	1/4	1200	19000	4	3	60	9.0	1/2
0.052	1/2	1/4	1350	20000	5	1	90	7.0	9/16
0.063	1/2	5/16	1500	19800	8	2	54	7.0	5/8
0.078	5/8	5/16	1850	23000	10	7	30	7.0	11/16

NOTES:

- 1. Material must be free from dirt, grease, paint etc. prior to welding, but may have light oil.
- 2. Two equal metal thicknesses of each gage.
- 3. Commercial coating weight is 1.25 oz. per square foot.
- 4. Electrode Material-RWMA Group A, Class 2. CMW[®] 3.
- 5. Pressure-tight joints require stripping the zinc coating prior to welding.
- 6. Nominal electrode diameter ranges between 8 to 10 inches.

From American Welding Society "Recommended Practices for Resistance Welding."

RECOMMENDED ELECTRODE MATERIALS

The process of resistance welding makes it possible to join most metals, similar or dissim-ilar. Bonds of adequate strength are obtainable for an extremely wide range of applications. Selecting electrodes of the proper alloy is a most important consideration in producing good welds at the required speed. The chart below is a valuable guide to this selection.

The weldability of two materials as expressed in the following chart has been derived after careful laboratory study and field survey of many factors which influence the welding or resultant weld of the metals. The factors include:

1. Thermal and electrical conductivity

- Metallurgical properties Nature of resultant weld or alloy Weld strength Relative accuracy in control of welding conditions necessary 2. 3. 4. 5.

The weldability of metals as shown in the chart applies only when conventional spot weld-ing methods are used on similar thicknesses of material. However, many metal combina-tions which are listed as having a "poor weldability" may be satisfactorily joined by using a special setup or procedure.

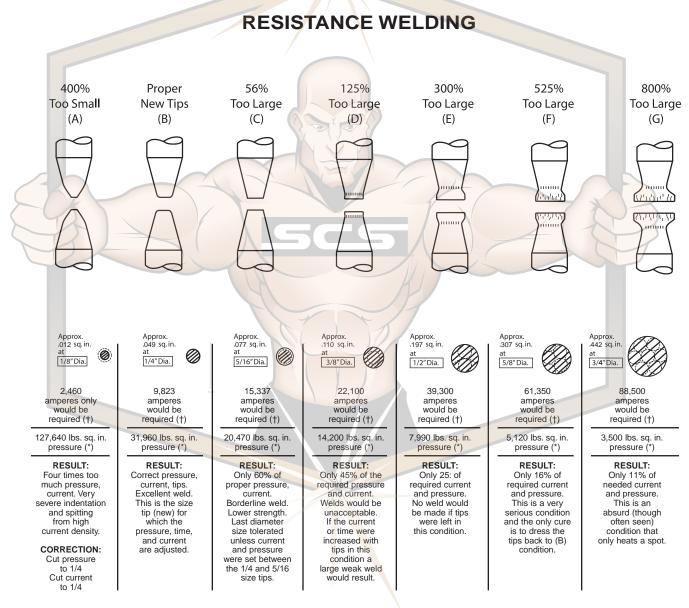
There is a CMW[®] Alloy for each specific welding application. Experienced CMW engineers will provide assistance with special problems.

Electrode Materials For SPOT WELDING Similar and Dissimilar Metals

	Tungsten Molyb- denum Mag- nesium Alloys	Nickel Stainless Chrome Steel Steel Steel	d Terne Tin Scaly C. R. Phos	Silicon Nickel Cupro Brass Bra	Alloys minum nium	
Commercially Pure Titanium					A "@ "@ 1	
Aluminum 2S-3S	$\begin{array}{c c} C & I & E & II \\ \hline I & 1 & 5 & I & 2 \\ \hline \end{array}$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	I D I D I E II D 34 1 34 1 34 1 34 1 2	II D II D II E 25 I 25 I 5 I	II H V C I C I C I	
Aluminum Alloys Duralumin 52S-17S-24S	C I E II I ¹ 5 I ²	EIIHIHIIE 1 (1)DI2 3I2 4 3I3 8I3 9 4I		II D II D II E 2 5 I 2 5 I 6 I	II E V D 1 2 I 2 I 1	
Copper—Pure	H II H I E II V 3 V 5 V	E II H I H II H Import H V 36 V 243 V 34 V 39 V		$\begin{array}{c c c c c c c c c c c c c c c c c c c $	II K V 6 V 2	
Brass—Red 5-25% Zinc	H I D II II 5 V 6			II D II D II D II E 6 V 6 V 6 V II II E		
Brass—Yellow 25-40% Zinc	E I D II II 5 IV 6		I E I E II C 6 IV 6 IV 3.4 IV	II C II C II C II C II II C II C <thii< th=""> <thii< th=""> <thii< th=""></thii<></thii<></thii<>		
Cupro-Nickel	D I C II II 25 II		2 2 2 7 3		XXX	
Nickel Silver	D I C II II 25 II		I E I H Image: E <		21	
Silicon Bronze	D I C II II 25 II	D II E IO E II E IO E II II II II 8 II II II				
Phosphor Bronze Grades A, C, & D	E I D II II 25 II	D II E IQ E II E IQ E II II II II 8 II II	I E G E I H G D II B II II II 7 II 3 II			
C. R. Steel D II D II B II C II C I C						
Scaly H II D D I D						
Tin Plate	E II E I D I I 9 I 59 I 39					
Terne Plate	E II E I D I 1 9 I 5 9 I 3					
Galvanized Steel Zinc Plate	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	D II C II C II C I C <thi< th=""> C I C</thi<>			ELECTRODES I - CMW® 28 II - CMW® 3 III - CMW® 100	
Cadmium Plate	E II E I D I I 9 I 5 I 3	D II C II C II C I I 9 I I I 8 I 9	designated as "excellent." A - Excellent E - Poor B - Very Good H - Very Poor	BLOCK INTERPRETATION WELD- ELECTRODE	IV - ELKONITE® 10W3 V - ELKON® 100M* VI - ELKONITE® 1W3∆or TC-5	
Chrome Plate	D I D II I 8 II 8		C - Good K - Impractical D - Fair	ABILITY AGAINST	*ELKON® 100 W may be substituted. Δ ELKONITE® 10W3 or TC-10 may be interchanged.	
Stainless Steel 18-8 Type	D I D II I 25 II II		ELECTRODES I - CMW® 28 II - CMW® 3	AGAINST INFORMA- TION	OElectrode materials in circles are second choice. SPECIAL INFORMATION	
Nickel Grade A	D II C II II ² 5 II ¹		III - CMW® 100 IV - ELKONITE® 10W3 V - ELKON® 100M*		 Good weld strength. May be welded under special conditions. Low weld strength. No actual weld nugget occurs, a "stick" is 	
Nickel Alloys Monel Nichrome (High Res.)	D II B II II 25 II 1		VI - ELKONITE® 1W3∆or TC-5 *ELKON® 100 W may be substit Δ ELKONITE® 10W3 or TC-10 r		 Welding conditions must be accurately controlled. Keep electrode clean to prevent sticking 	
Magnesium Alloys	D I I ¹ 5		interchanged. OElectrode materials in circles a second choice.	are	 to the work. Good practice recommends cleaning steel before welding. Use one flat tip to minimize distortion or 	
Molybdenum Tungsten	D II II 25				 discoloration. Coating may dissolve in other metals or burn away. 	

RESISTANCE WELDING ELECTRODE MAINTENANCE

SOUTHERN COPPER & SUPPLY COMPANY, INC. 800-289-2728


This Chart shows graphically the importance of Electrode maintenance. This is not only important from the quality of the weld, which is of first importance, also extra load added to the welding machine and equipment. Read the data on the chart, you can then draw your own conclusions.

YOU CAN'T AFFORD TO NEGLECT YOUR ELECTRODES!

Keep your Electrodes dressed for maximum production and quality welds.

A TIP DRESSER WILL PAY DIVIDENDS!

We can supply you with hand operated Tip Dressers or Pneumatic Power Driven Dressers. Design or type will depend on your production requirements. Pages 66 & 67.

(†) Current density required for this gage to be 200,000 amps per sq. in. Setting is 9,900 amps for condition (B) (*) Five inch diameter air cylinder A 80 lbs. air pressure—1570 lbs. on ram.

Reproduced by permission of McGraw-Hill Book Company, Inc.

WELDING ELECTRODE / CAP EVALUATION FORM

(С

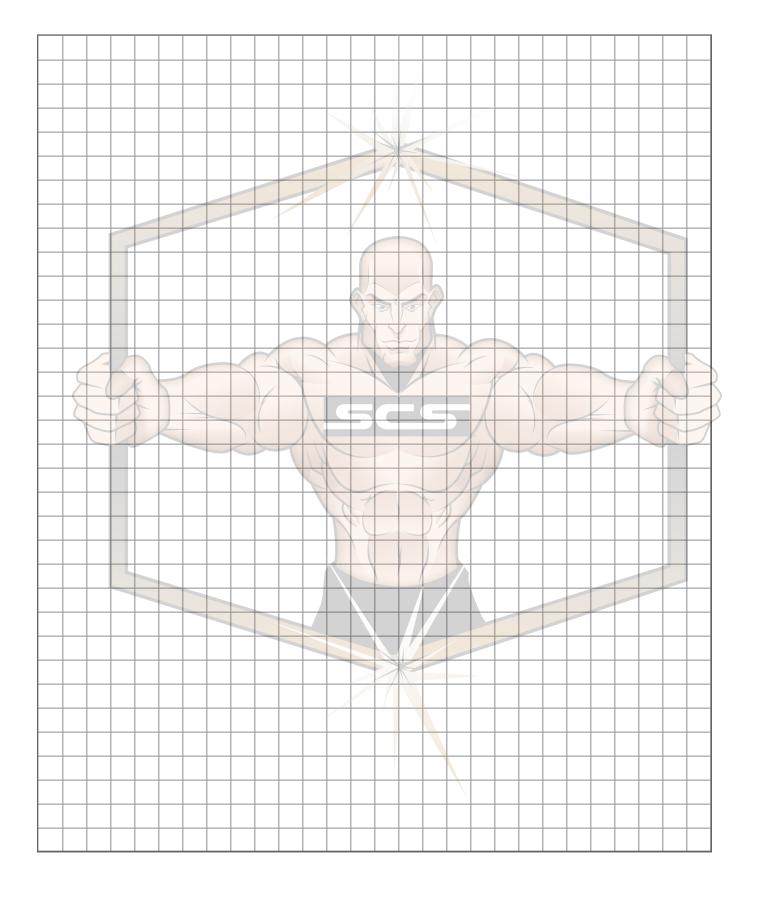
Facility _____

Contact

_____ Phone _____ Fax _____ Date _____

Location _____

Equ	lipmen	t P	lant/Li	ne #									
ТҮРЕ				Fixed Auto	Pres	Press			Online		Offline	Other (Specify)	
		СС	Gun	Pinch	Sciss	or	Other (Specify				Comment		
GUN STYLE													
CONDIT	ION	Ne	ew	Old	Good	d	Poor						
		Niumak	or of			6							
STEPP CAPABII		Numb Ste		Linear	Non-lin	ear	None						
UP-SLC CAPABII		Ye	es in the second se	No								-	
PULS CAPABII		Ye	es	No		1	V		R	7		A	
NUMBER	ROF	Schee per S		Transformers per SCR	Guns Transfor		Transform Taps	ier	Transform KVA	ner			
				W	orkpiec	es (N	/lateria	als)					
POSITION	CHECK ONE (per workpiece)							- Ormain					
_			Bare S		iminized	Zn Elec	ctroplate	Ga	Ilvanneal	G	ot Dipped alvanized	Organic	
Outside	-												
Inside													
Outside													
FIT-UP	Go	bod	Poor	r				Co	mments	-			
NOCE	Α		В		ELEC C	TROI			E		F	Other	
NOSE STYLE	(Pointe	d)	Dome))(Flat)	(Off	set)	(Tru	L Incated)	(R	adius)	(Specify)	
MATERIAL	Class	1	Class 2	2 Cli (I	ass 20 DSC)	Otl (Spe	her ecify)						
TAPER STYLE	Fema	le	Male	_					Com	iments			
ALIGN- MENT	Good	k	Poor	Re Ba	quires ackup								


DO'S AND DON'TS FOR RESISTANCE WELDING ELECTRODES

DO'S	DON'TS
 Use the proper electrode material for the job you are doing. Use standard electrodes wherever possible. Use the most suitable tip diameter for the thickness of stock being welded. 	 Never use unidentified electrodes or electrode materials. Avoid special, offset or irregular tips when the job can be done with a standard straight tip.
 Use open sight drains to observe more readily the water flow through the holders. 	 Don't use small tips on heavy gauge welding jobs or large tips on small work.
 Connect the water inlet hose to the proper holder inlet so that the water flows through the center cooling tube first. Internally cool the spot welding tips with cool water flowing at a rate of at least 1/2 gallon per minute through each tip. 	 Don't forget to turn on the cooling water full force before starting to weld. Never use water hose that will not fit the holder water connection nipples snugly. Do not allow water connections to become leaky,
 7. Be sure the internal water cooling tube of the holder projects into the tip water hole to within 1/4" of the tip hole bottom. 8. Adjust the internal water cooling tube of the holder to the proper height when changing to a different length tip. 	 clogged or broken. 7. Avoid using holders with leaking or deformed tapers. 8. Never use electrode holders that do not have an adjustable internal water cooling tube.
 9. Be sure top of adjustable water cooling tube in holders is cut at an angle so as to avoid jamming tip down and shutting water off. 10. Place a thin film of cup grease on the tip 	 Do not permit adjustable water tube to be "frozen" by accumulation of deposits. A few drops of oil periodically will keep the tube free. Do not ellow electrodes to remain idle in tenered.
taper prior to inserting in the holder, to make it easier to remove.11. Use ejector type holders for easy removal of tips and to avoid damage to tip tapers.	 Do not allow electrodes to remain idle in tapered holder seats for extended periods. Don't use pipe wrenches or similar tools in removing electrodes.
 Keep the tip taper and holder taper clean, smooth and free of foreign deposits. 	 Avoid using white lead or similar compounds to seal a leaking taper.
 Dress spot welding electrodes frequently to maintain the quality of the welds. Dress electrodes in a lathe to their original contour whenever possible. Use a rawhide or rubber mallet for striking holder or tips in aligning operations. 	 Never permit a spot welding tip to mushroom enough to make dressing difficult. Never dress electrodes with a coarse file. Don't pound on the holder or tip with a steel hammer in aligning the welder arms.
 16. Provide flood cooling on both sides of the seam welding wheel. 17. Use properly designed knurling wheels to maintain proper seam welding wheel shape. 	 16. Avoid the use of seam welder wheels too thin to stand the heat or pressure of your job. 17. Do not permit seam welding wheel to run off the corners of the work being welded.

